521 |
Theoretical studies of Pd on MgO(100) surface with density functional and transition state theories /Xu, Lijun, January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 107-114).
|
522 |
Untersuchung gasochrom schaltender WolframoxideWeis, Hansjörg. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2002--Aachen.
|
523 |
Synthesis and characterization of palladium/polycarbonate nanocomposites /Onbattuvelli, Valmikanathan P. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references. Also available on the World Wide Web.
|
524 |
Bioabbaubare Tenside durch reduktive Aminierung von Isomaltulose Kinetik, Heterogenkatalysator und Analytik /Dietz, Hans-Christian. Unknown Date (has links)
Techn. Universiẗat, Diss., 2005--Darmstadt.
|
525 |
Katalysatorpräparation mittels MOCVD und DRIFT-Spektroskopie zur Methanol-Dampfreformierung an PdZn-ZnO-KatalysatorenKießlich, Frank. Unknown Date (has links) (PDF)
Nürnberg, Universiẗat, Diss., 2004--Erlangen.
|
526 |
Untersuchung helikal-chiraler Polymethacrylate als Liganden für die asymmetrische ÜbergangsmetallkatalyseHoffart, Timo. Unknown Date (has links)
Techn. Universiẗat, Diss., 2006--Darmstadt.
|
527 |
Characterization of the interface between prefabricated dental implant component and cast dental alloysSanli, Yurdanur, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 147-151).
|
528 |
Advancing a methodology for implant-triggered cancer treatment with Bioorthogonal Palladium-Labile prodrugsBray, Thomas Llewelyn January 2018 (has links)
Chemotherapeutics are potent molecules capable of systematically treating cancer. As healthy tissues contain features also inherent to cancer cells, treatment often results in unwanted sideeffect. As chemotherapeutic side-effect produces significant harm and often limits optimal drug dosing, new strategies must be developed to improve treatment selectivity. A prodrug strategy provides one option to improve the selectivity of an established chemotherapeutic. By modifying a pharmaceutically active drug, interaction with biology may be functionally masked. Subsequent ‘un-masking’ the prodrug exclusively at the intended treatment site may direct treatment only to where the anticancer effect is required. This thesis progresses the novel approach of bioorthogonal organometallic (BOOM) prodrug activation. A metal catalyst and masked chemotherapeutic constitute reaction partners to provide a new strategy for intratumoural prodrug activation. Whereby the prodrug and metal catalyst are independently non-cytotoxic, in combination the prodrug undergoes catalytic activation to deliver an anticancer affect. By positioning the metal catalyst within a tumour (i.e. by microsurgery), an administered masked prodrug sensitive to catalyst-mediated activation could allow for ‘targeted’ chemotherapy localised to the tumour site. The design, synthesis and study of new BOOM prodrug candidates are reported herein. Novel protecting groups are developed to enhance drug masking to biology and subsequent catalyst-mediated activation. Prodrug screening studies are carried out in cancer cell culture models, with zebrafish and in ex vivo rodent model tumour explants. The catalyst, a palladium (Pd0) functionalised bead system, is optimised for enhanced activation, drug release and in vivo implantation. The potentially infinite generation of active chemotherapeutics exclusively in tumour would increase the efficacy of treatment whilst reducing harmful effect on healthy tissue.
|
529 |
Graphene supported antimony nanoparticles on carbon electrodes for stripping analysis of environmental samplesSilwana, Bongiwe January 2015 (has links)
>Magister Scientiae - MSc / Platinum Group Metals (PGMs), particularly palladium (Pd), platinum (Pt) and rhodium (Rh) have been identified as pollutants in the environment due to their increased use in catalytic converters and mining in South Africa (as well as worldwide). Joining the continuous efforts to alleviate this dilemma, a new electrochemical sensor based on a nanoparticle film transducer has been developed to assess the level of these metals in the environment. The main goal of this study was to exploit the capabilities of nanostructured material for the development and application of an adsorptive stripping voltammetric method for reliable quantification of PGMs in environmental samples. In the study reported in this thesis, glassy carbon electrode (GCE) and screen-printed carbon electrode (SPCE) surfaces were modified with conducting films of nanostructured reduced graphene oxide-antimony nanoparticles (rGO-SbNPs) for application as
electrochemical sensors. The rGO-SbNPs nanocomposite was prepared by Hummer`s synthesis of antimony nanoparticles in reaction medium containing reduced graphene oxide. Sensors were constructed by drop coating of the surfaces of the carbon electrodes with rGO-SbNPs films followed by air-drying. The nanocomposite material was characterised by: scanning and transmission electron miscroscopies; FTIR, UV-Vis and Ramanspectrosocopies; dc voltammetry; and electrochemical impedance spectroscopy. The real surface area of both electrodes were studied and estimated to be 1.66 × 10⁶ mol cm⁻² and 4.09 × 10³ mol cm⁻² for SPCE/rGO-SbNPs and GCE/rGO-SbNPs, respectively. The film thickness was also evaluated and estimated to be 0.36 cm and 1.69 × 10⁻⁶ cm for SPCE/rGO-SbNPs and GCE/rGO-SbNPs, respectively. Referring to these results, the SPCE/rGO-SbNPs sensor had a better sensitivity than the GCE/rGO-SbNPs sensor. The electroanalytical properties of the PGMs were first studied by cyclic voltammetry followed by indepth stripping voltammetric analysis. The development of the stripping voltammetry methodology involved the optimisation of experimental conditions such as selection of adequate supporting electrolyte, choice of pH and /or concentration of supporting electrolytes, deposition potential, deposition time, stirring conditions. The detection of Pd(II), Pt(II) and Rh(III) in environmental samples were performed SPCE/rGO-SbNPs and GCE/rGO-SbNPs at the optimised experimental conditions For the GCE/rGO-SbNPs sensor, the detection limit was found to be 0.45, 0.49 and 0.49 pg L⁻¹ (S/N = 3) for Pd(II), Pt(II) and Rh(III), respectively. For the SPCE/rGO-SbNPs sensor, the detection limit was found to be 0.42, 0.26 and 0.34 pg L⁻¹ (S/N = 3) for Pd(II), Pt(II) and Rh(III), respectively. The proposed adsorptive differential pulse cathodic stripping voltammetric (AdDPCSV) method was found to be sensitive, accurate, precise, fast and robust for the determination of PGMs in soil and dust samples. The simultaneous determination of PGMs was also investigated with promising results obtained. The AdDPCSV sensor performance was compared with that of inductive coupled plasma mass spectroscopy (ICP-MS) for the determination of PGM ions in soil and dust samples. It was found that though the metals could be determined by ICP-MS technique, it was limited from the standpoints of sensitivity, ease of operation and versatility compared to the AdDPCSV sensor. This study has show cased the successful construction and application of novel SPCE/rGO-SbNPs and GCE/rGO-SbNPs AdDPCSV sensors forthe determination of PGMs in environmental samples (specifically roadside dust and soil samples). The study provides a promising analytical tool for monitoring PGMs pollutants that are produced by automobiles and transported in the environment.
|
530 |
Late-Stage Peptide Functionalization by Ruthenium-Catalyzed C H Arylations and AlkylationsSchischko, Alexandra 24 October 2018 (has links)
No description available.
|
Page generated in 0.0437 seconds