1 |
Microfabricated Gas Sensors Based on Hydrothermally Grown 1-D ZnO NanostructuresJiao, Mingzhi January 2017 (has links)
In this thesis, gas sensors based on on-chip hydrothermally grown 1-D zinc oxide (ZnO) nanostructures are presented, to improve the sensitivity, selectivity, and stability of the gas sensors. Metal-oxide-semiconductor (MOS) gas sensors are well-established tools for the monitoring of air quality indoors and outdoors. In recent years, the use of 1-D metal oxide nanostructures for sensing toxic gases, such as nitrogen dioxide, ammonia, and hydrogen, has gained significant attention. However, low-dimensional nanorod (NR) gas sensors can be enhanced further. Most works synthesize the NRs first and then transfer them onto electrodes to produce gas sensors, thereby resulting in large batch-to-batch difference. Therefore, in this thesis six studies on 1-D ZnO NR gas sensors were carried out. First, ultrathin secondary ZnO nanowires (NWs) were successfully grown on a silicon substrate. Second, an on-chip hydrothermally grown ZnO NR gas sensor was developed on a glass substrate. Its performance with regard to sensing nitrogen dioxide and three reductive gases, namely, ethanol, hydrogen, and ammonia, was tested. Third, three 1-D ZnO nanostructures, namely, ZnO NRs, dense ZnO NWs, and sparse ZnO NWs, were synthesized and tested toward nitrogen dioxide. Fourth, hydrothermally grown ZnO NRs, chemical vapor deposited ZnO NWs, and thermal deposited ZnO nanoparticles (NPs) were tested toward ethanol. Fifth, the effect of annealing on the sensitivity and stability of ZnO NR gas sensors was examined. Sixth, ZnO NRs were decorated with palladium oxide NPs and tested toward hydrogen at high temperature. The following conclusions can be drawn from the work in this thesis: 1) ZnO NWs can be obtained by using a precursor at low concentration, temperature of 90 °C, and long reaction time. 2) ZnO NR gas sensors have better selectivity to nitrogen dioxide compared with ethanol, ammonia, and hydrogen. 3) Sparse ZnO NWs are highly sensitive to nitrogen dioxide compared with dense ZnO NWs and ZnO NRs. 4) ZnO NPs have the highest sensitivity to ethanol compared with dense ZnO NWs and ZnO NRs. The sensitivity of the NPs is due to their small grain sizes and large surface areas. 5) ZnO NRs annealed at 600 °C have lower sensitivity toward nitrogen dioxide but higher long-term stability compared with those annealed at 400 °C. 6) When decorated with palladium oxide, both materials form alloy at a temperature higher than 350 °C and decrease the amount of ZnO, which is the sensing material toward hydrogen. Thus, controlling the amount of palladium oxide on ZnO NRs is necessary.
|
2 |
Kinetic and Morphological Studies of Pd Oxidation in O2-CH4 mixturesHan, Jinyi 29 April 2004 (has links)
The oxidation of Pd single crystals: Pd(111), Pd(100) and Pd(110) was studied using Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Low Electron Energy Diffraction (LEED) and Scanning Tunneling Microscopy (STM) as they were subjected to O2 in the pressure range between 1 and 150 Torr at temperatures 600-900 K. The oxygen species formed during oxidation, the oxygen uptake dependence on the sample history, the Pd single crystal surface morphology transformations, and the catalytic methane combustion over Pd single crystals were investigated in detail. The Pd single crystal oxidation proceeded through a three-step mechanism. Namely, (1) oxygen dissociatively adsorbed on Pd surface, forming chemisorbed oxygen and then surface oxide; (2) atomic oxygen diffused through a thin surface oxide layer into Pd metal, forming near surface and bulk oxygen; (3) bulk PdO formed when a critical oxygen concentration was reached in the near surface region. The diffusion of oxygen through thin surface oxide layer into Pd metal decreased in the order: Pd(110)>Pd(100)>Pd(111). The oxygen diffusion coefficient was estimated to be around 10-16 cm2 s-1 at 600 K, with an activation energy of 80 kJ mol-1. Once bulk PdO was formed, the diffusion of oxygen through the bulk oxide layer was the rate-determining step for the palladium oxidation. The diffusion coefficient was equal to 10-18 cm2 s-1 at 600 K and the activation energy was approximately 120 kJ mol-1. The oxygen diffusion through thin surface oxide layer and bulk PdO followed the Mott-Cabrera parabolic diffusion law. The oxygen uptake on Pd single crystals depended on the sample history. The uptake amount increased with the population of the bulk oxygen species, which was achieved by high oxygen exposure at elevated temperatures, for example in 1 Torr O2 at above 820 K. Ar+ sputtering or annealing in vacuum at 1300 K depleted the bulk oxygen. The Pd single crystal surface morphology was determined by the oxidation conditions: O2 pressure, treatment temperature and exposure time. When bulk PdO was formed, the single crystal surface was covered with semi-spherical agglomerates 2-4 nm in size, which tended to aggregate to form a“cauliflower-like" superstructure. The single crystal surface area during oxidation, determined by integrating the STM image, experienced three major expansions in consistent with a three-step oxidation mechanism. The surface area on the oxidized single crystals increased in the order: Pd(110)
|
Page generated in 0.0767 seconds