• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Unit Load Stability Under Dynamic Forklift Handling Conditions

Capizzi, Seth 12 June 2024 (has links)
A vast amount of goods and products are transported in bulk as palletized unit loads, where the pallet is the base of the unit load. Material handling systems represent the physical environment in which unit loads are transported through supply chains. Material handling systems include different transportation modes and storage conditions, many of which are well researched. While industrial forklifts are paramount to material handling systems, the physical effect they have on load systems is not well understood. The weight of the unit load causes the pallets to deflect, and previous research has revealed that forklift vibration amplifies pallet deflection. The effects of forklift vibration on pallet deflection are not considered in international standards used to determine pallet load capacities. Standards such as ISO 8611 and ASTM D1185 provide deflection limits that are used to determine pallet load capacities, yet there is a lack of understanding and justification on these deflection limits related to forklift support conditions. A comprehensive understanding of the effects of forklift vibration on unit load performance is necessary to produce accurate and safe load capacity ratings. In this research, two studies were completed to gain further understanding on unit load performance and stability in forklift handling conditions. The first study evaluated pallet deflection and unit load stability of unbound unit loads designed with a 20 mm. performance limit (ISO 8611, 2011). Common forklift handling factors were investigated and included fork tine angle (level and 4-degree incline) and pallet orientation (racked across the width and across the length). The results showed that the dynamic environment of forklift handling created unstable unit loads. The second study of this research project investigated unit load performance against unit load design factors of load capacity (500 lbs., 750 lbs., 900 lbs.) and box size (8 in., 12 in., 16 in.). The results showed that unit load instability occurred at all load levels and all box sizes. Additionally, an increase in box size decreased load bridging for unit loads under fork tine support conditions. Furthermore, the time to instability was used to calculate projected forklift travel distances that can be used to further optimize material handling systems. / Master of Science / Many goods and products are transported across the world every day using a multitude of transportation modes and systems. The use of pallets to transport goods in bulk optimizes efficiency of the supply chain system. The physical transportation environment pallets are exposed to is used to determine their load capacity. While pallets are commonly handled by industrial forklifts, the environment the forklift creates for the pallet is not well understood. The mechanical stressors that forklifts create play a vital role in pallet performance and have been found to cause unit load instability.  Vibration represents one mechanical stressor that creates a hazard for material handling.  The goal of this research was to evaluate the performance of pallets in relation to the vibration imposed by industrial forklifts.   Previous studies measured forklift vibration and developed test procedures to replicate the forklift handling environment in a laboratory setting. Previous research investigated unit load performance where the pallet load capacity was determined using a 4.5-degree performance limit (ISO 8611, 2021). This study expanded on previous research by further investigating unit load performance against various load capacities and design parameters. This study included two experiments. The first experiment investigated the effect of common material handling factors on unit loads designed with a 20 mm. performance limit (ISO 8611, 2011). The second experiment investigated the effect of unit load design parameters such as load capacity and box size on unit load performance.   This study found that forklift vibration creates a hazardous environment where pallet deflection combined with magnified vibration caused unbound unit loads to become unstable. The data also revealed that larger boxes decrease unit load bridging in the fork tine support condition. Additionally, projected forklift travel distances were determined for various pallet testing standards. This data can be used to further optimize material handling systems.
2

Evaluation of the Pallet Deflection that Occurs Under Forklift Handling Conditions

Huang, Yu Yang 24 September 2021 (has links)
Industrial forklifts consist of one of the most common handling methods for pallets in warehouses and distribution centers. Pallets deflect while they are being transported by forklifts due to the weight of the unit load. Thus, most of the deflection is observed to occur on the outside edges and corners of the pallet. Several international standards are used in order to define the maximum deflection for pallet bending, including ISO 8611 and ASTM D1185. However, there is still a lack of understanding on the accuracy of these deflection limits and the exact performance of a pallet during a forklift support condition. Understanding pallet bending during forklift support condition and how it affects the stability of a unit load helps create an industry accepted deflection limit that will help to design safer and more cost-effective pallets. For this study, two chapters were proposed in order to assess pallet deflection and unit load stability. The first chapter consisted of measuring and analyzing the vibration levels for three different industrial forklifts affect by factors such as the speed, the payload of the unit load carried, sensor location, forklift type, and road conditions. The results obtained showed that the highest vibration intensity occurred at 3-4 Hz, while the highest overall Grms value observed was 0.145 G2/Hz (between 1-200 Hz). An increase in the forklift speed caused an increase in vibration intensity. In contrast, an increase in the unit load weight carried by the forklift caused a decrease in vibration intensity. Among the three forklifts studied, the gas-powered forklift had the highest vibration intensity, and all forklifts, when driven on asphalt, experienced more vibration. The second chapter of the research project consisted of evaluating pallet deflection under forklift handling conditions. These conditions included fork tines configuration (leveled and 4° angle), unit load condition (bound and unbound), pallet orientation (across width and across length), and type of handling condition (static and dynamic). The results showed that when unit loads were handled in a static condition, they survived the throughout the entire testing. However, when they were tested under a dynamic condition, and specifically, with the unbound unit loads, they did not survive the entire testing. Moreover, unit loads that were tested with the 4° angle forktines configuration tended to survive longer during the dynamic testing. For this particular case, the unit load capacity obtained based on the ISO 8611 standard was too conservative. / M.S. / Forklifts play an important role in the transportation of materials goods in the supply chain. Pallets experience vibration when they are handled by industrial forklifts. This vibration plus the combined effects mainly due to the unit load weight affects the amount that pallets bend. Thus, depending on the amount of pallet bending, they can produce unit load instability. Currently, there is a lack of understanding of how much pallet bending is acceptable. Therefore, the goal of this research was to understand the behavior of pallet bending when they are handled under forklift conditions. Two experiments were conducted in order to study pallet deflection under forklift handling conditions. The first experiment, which consisted in analyzing forklift vibration, showed that an increase in the forklift speed caused an increase in vibration intensity. In contrast, an increase in the payload of the unit load resulted in a decrease in vibration intensity. Among the three forklifts studied, the gas-powered forklift showed the highest vibration intensity. Forklifts driven on asphalt experienced more vibration in comparison to the ones driven on concrete. The second experiment, which consisted in assessing pallet deflection under a simulated forklift handling condition, showed that unit loads under a dynamic environment (vibration) increased the probability of unit load instability. Furthermore, it was observed that applying stretch wrap to a unit load decreased its instability and at the same time increases its survivability. Also, the results showed that the proposed ISO 8611 deflection limit is too conservative for this particular handling condition.

Page generated in 0.1108 seconds