• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photo-alignment of orientationally patterned surface for disclination generation and optical applications

Wang, Mengfei, Wang 31 July 2018 (has links)
No description available.
2

LARGE AREA TUNABLE LIQUID CRYSTAL LENS

Jamali, Afsoon, Jamali 15 November 2018 (has links)
No description available.
3

Liquid Crystal Flat Optical Elements Enabled by Molecular Photopatterning with Plasmonic Metamasks

Yu, Hao 26 July 2020 (has links)
No description available.
4

HIGH EFFICIENCY DOUBLE TWIST PANCHARATNAM PHASE OPTICAL BEAM DEFLECTORS

Cheng, HsienHui 24 July 2015 (has links)
No description available.
5

Atom interferometry : experiments with electromagnetic interactions and design of a Bose Einstein condensate setup / Interférométrie atomique : expériences d'interaction électromagnétique et conception d'un nouvel interféromètre à condensats de Bose-Einstein

Décamps, Boris 22 November 2016 (has links)
La première partie décrit trois expériences réalisées avec l'interféromètre atomique à jet de lithium supersonique développé à Toulouse. La seconde partie présente le nouvel interféromètre atomique à condensats de Bose-Einstein (CBE) développé dans le but de tester la neutralité de la matière. Les trois premières expériences exploitent l'interaction entre un atome de lithium et différents champs électromagnétiques. Une différence de potentiel électrique dépendant du temps a servi à moduler la phase des deux bras de notre interféromètre à des fréquences différentes, ce qui a permis une détection homodyne et hétérodyne d'ondes de matière. Une phase géométrique de la lumière (la phase de Pancharatnam) a été transférée à notre signal interférométrique par les réseaux de diffraction de Bragg ce qui a ajouté un nouvel outil à la panoplie permettant le contrôle d'ondes de matières. Enfin, un faisceau laser focalisé sur un seul des deux bras nous a permis de mesurer avec exactitude une des longueurs d'onde d'extinction du lithium (correspondant à une valeur de polarisabilité dynamique nulle). L'objectif du nouvel interféromètre à CBE est de réaliser une nouvelle mesure de la charge électrique résiduelle de la matière et en particulier des isotopes du rubidium 85Rb et 87Rb. Cette mesure nous permettra de connaître avec une plus grande sensibilité la différence de charge entre le proton et l'électron ainsi que la charge du neutron. Le principe de cette mesure repose sur une séparation spatiale importante entre les deux bras d'un interféromètre en fontaine ainsi que sur un temps de cycle de 5 s. Ces caractéristiques ont nécessité un travail de conception à la fois au niveau de la source (une puce à atome) et au niveau du phénomène de diffraction (séparation en impulsion importante) qui sera exposé dans un premier temps. Dans un second temps, les choix techniques en matière de chambre à vide, système laser et sources de champs magnétiques seront décrits et caractérisés. Enfin, les performances actuelles de cette source d'atomes froids seront présentées et comparées à nos attentes. / This thesis's first part describes the realization of three experiments using an atom interferometer operated with a lithium supersonic beam. The second part presents the development of a new BEC interferometer designed to test matter neutrality. The first three experiments rely on the interactions of lithium atom with different electromagnetic fields. A time dependent electric potential difference was used to produce phase modulation of both interferometer arms at different frequencies, leading to homodyne and heterodyne detection of atom waves. A geometric phase of light (the Pancharatnam phase) was successfully transferred to our interferometer signal during Bragg diffraction, enlarging the atom optics toolbox for phase control in an atom interferometer. Finally, a focused laser beam was used to measure accurately the value of one lithium tune-out wavelength (for which its dynamic polarizability is zero). The new BEC interferometer was designed to measure a possible non-zero electric charge of rubidium isotopes 85Rb and 87Rb with enhanced sensitivity to the electron-proton charge difference and neutron neutrality. This setup relies on a large spatial separation between the two interferometer arms in a fountain configuration aiming at a cycle time of 5s. These features required particular design work both on the atomic source (atom-chip) and the diffraction process (Large Momentum Transfer). The technical choices on the vacuum chambers, laser system and magnetic sources are described and characterized. Finally, the up-to-date cold-atom source performances is shown and compared to our expectations.
6

The application of negative refractive index metamaterials to mm and sub-mm wavelength instrumentation

Mohamed, Imran January 2013 (has links)
The manipulation of electromagnetic radiation via the use of periodic arrays of sub-wavelength metallic structures (unit cells), nowadays named "metamaterials", has been known of in the microwave engineering community for over fifty years. In the last decade interest in such sub-wavelength structures grew, mainly due to their ability to interact with radiation in ways natural materials could not e.g. by producing a negative refractive index (NRI). This project sought to see whether NRI metamaterials could provide benefits to the mm and sub-mm wavelength astronomical instrumentation currently in use. To aid rapid design and optimisation of devices made from a cascaded set of metamaterial unit cells, a hybridised Transmission Line (TL) model was developed where the matrix components used in the TL model were "seeded" with data taken from a Finite Element Method (FEM) model of a simpler structure. A comparison between the two found that the TL model was capable of providing results that differed from the FEM model by no more than ~10E−4 for the transmitted intensity, |S21|^2, and <1° for transmitted phase, arg(S21). A slab of material with a refractive index, n = −1, can exhibit an effect known as "superlensing". A three unit cell thick NRI slab was designed, manufactured and experimentally tested. It was found to be capable of producing an NRI across a fractional band of at least 21%, producing a refractive index value of n = −1 at around 90 GHz. The experimental and simulated transmission and reflection data show good match with each other. A highly birefringent air gap Half Wave Plate (HWP) was designed, manufactured and experimentally tested. Defining its useful bandwidth as the region where the phase difference, is equal to (−180 ± 3)° a single HWP had a fractional bandwidth of 0.3%. The bandwidth was extended by using the Pancharatnam method, developed in the 1950's to produce highly achromatic optical wave plates. The method however is applicable to other frequencies and polarisation control technologies. Optimising a three HWP TL-based Pancharatnam model, the HWP's modelled fractional bandwidth increased to 6.6%. Experimental data agrees with the model showing a plateauing of the phase difference at −180°. A highly birefringent polypropylene embedded Quarter Wave Plate (QWP) was also designed, manufactured and tested. Defining its useful bandwidth as the region where the differential phase is (90 ± 2)° a single QWP produced a fractional bandwidth of 0.6%. By optimising a four QWP TL-based Pancharatnam model, the QWP's performance was improved to 7.8%. Experimental data, whilst not in complete agreement with the model does show a reduction in the gradient of phase difference where it crossed 90°. It was found that current designs for NRI metamaterials fall short of the standards required to be used in quasi-optical astronomical instrumentation due to high dispersion and absorption. The high dispersion limits NRI metamaterials to uses in instruments built for narrowband applications. Whilst the Pancharatnam method can increase bandwidths where a flat differential phase response is required, this comes at the cost of increased absorption. To reach their full potential, NRI metamaterials' lossiness must be reduced e.g. possibly by cryogenic means or the use of "active" metamaterials.
7

TUNABLE LIQUID CRYSTAL BEAM STEERING DEVICE BASED ON PANCHARATNAM PHASE IN FRINGE FIELD SWITCHING MODE

Yousefzadeh, Comrun 23 July 2021 (has links)
No description available.
8

Micropatterned Photoalignment for Wavefront Controlled Switchable Optical Devices

Glazar, Nikolaus 26 April 2016 (has links)
No description available.

Page generated in 0.0631 seconds