Spelling suggestions: "subject:"paper mild effluent"" "subject:"paper milk effluent""
1 |
Implementation of a novel pigment recovery process for a paper millJortama, P. (Pirjo) 19 December 2003 (has links)
Abstract
The objective of this study is to demonstrate an ecological and economic recovery process, which was developed and implemented at Stora Enso Oyj Fine Paper Oulu mill during the period 2000 to 2002. The ECO plant recovers the material called ECO pigment from the effluent treatment sludge and it can be used as a filler in multicoated fine paper production for art printing purposes.
The ECO plant process consists of the following process stages. First, there is a separating phase for the recoverable material from fibres and other rejects, which is done with a wire washer. Then the fractionating of the recoverable material is performed with two-stage centrifugal cleaners. Chemical treatment with peracetic acid is used as a preservative and to increase the brightness of the ECO pigment a little. Then the recoverable material is stored in the pigment storage area and dosed to the paper machines as a filler. The rejects from the ECO plant are thickened in belt filter presses and then transferred to the bark storage area, where they are mixed with bark and combusted in a solid fuel boiler.
The majority of the particles of the recovered ECO pigment were less than 45 μm; this size of particle accounted for 96.4% (on average) according to the studies made between June and December 2002.
The use of ECO pigment is not found to cause more web defect problems on the base paper than before, according to the studies of the number of total web defects with the achieved particle size distribution and because the microbe content has been controlled.
There are three sources from which the ash content of the base paper is composed after the start-up of the ECO plant, i.e. the broke, the virgin filler and ECO pigment. Therefore the use of ECO pigment partly decreases the need to use virgin filler. The ECO pigment was tested in the coating colour in pilot tests, and based on these results it could be used in the coating colour. The dry solid content of the ECO pigment has to be increased from the present level for the coating application.
|
2 |
OptImisation of the H-type microbial fuel cell using whey as a substrateKassonga, Josue 13 September 2011 (has links)
MSc, Faculty of Science, University of the Witwatersrand, 2011 / A growing interest is on the biological remediation of pollutants with the added benefit of generating electricity in microbial fuel cells (MFCs). Therefore, the analyses of suitability and potential of full-strength paper mill effluent and cheese whey were separately investigated in such devices. The most promising effluent was selected for biofilm optimization studies. In the biofilm buildup studies, anodes were enriched with microorganisms inherent to whey for a period between one and three months before their application in reactors. Independently, pre-incubated electrodes which were two-month-old were used serially in four MFCs of seven days each. In the preliminary study, the maximum power densities were 24 ± 3 mW/m2 (0.02 % coulombic efficiency − εcb) and 16.7 ± 1.8 W/m2 (εcb = 3.7 %) in paper mill effluent and whey, respectively. Following a three-month acclimation of whey anodophilic microbes, the power increased to 1 800 W/m2 (εcb = 80.9 %) and 92.8 % total chemical oxygen demand (tCOD) removal after a single batch cycle in MFCs. In anode recycling experiments, the operation was characterised by power of 390 ± 21 W/m2 (εcb = 0.25 %) in the third anode reuse; whilst the second reactor cycle had the highest tCOD removal (44.6 %). The anodophilic microbial species identified in cheese whey were from the Lactobacillus genus. This study concluded that wastes can supply fuel for power generation with simultaneous remediation; whey had greater potential than paper mill effluent; and both continual acclimation of inherent waste microbes and anode recycling improved the performance of MFCs.
|
3 |
Freshwater Flow, Saltwater Intrusion, Paper Mill Effluent, and Fish Assemblage Structure in the Lower Neches River, TexasPizano, Rebecca I 16 December 2013 (has links)
In 2011, Texas experienced the worst drought in recorded history. This has escalated concerns regarding environmental flows needed to sustain freshwater and estuarine systems as human needs are addressed during drought periods. In this thesis, I analyze fish assemblages and water quality variables in order to observe the effects of drought in the lower Neches River below the saltwater barrier located upstream from Beaumont, Texas. Fish and water quality samples were taken during drought conditions during fall 2011 and summer 2012, after a season of rain. During fall 2011, sites surveyed above the barrier had lower salinity but similarly low dissolved oxygen (DO) levels compared with sites surveyed below the barrier. Salinity levels during fall 2011 were relatively high (reaching up to 15 ppt), whereas salinity during summer 2012 never rose above 1.5 ppt. For gillnet samples obtained during fall 2011, fish species richness was higher in December following a series of rain events than during drought conditions in October and November. Although fish species richness was similar between fall 2011 and summer 2012, species composition varied greatly. For seine samples obtained during summer 2012, species richness was higher during May and July (when the barrier was open) than during June and August (when the barrier was closed). Species richness was lowest for sites in closest proximity to a paper mill effluent discharge pipe located below the barrier. Also, species richness was higher at sites above the barrier than at sites below the barrier regardless of whether or not the barrier was closed. Multivariate statistical analyses of gillnet samples revealed a large amount of compositional overlap among fish assemblages, regardless of time period and location; however, analyses of seine samples revealed that fish assemblages above the barrier were different than those from samples obtained below the barrier and that fish assemblages varied based on time period. Results indicate that, during periods of low flow, water quality deteriorates in the Lower Neches River below the saltwater barrier. During these periods of environmental degradation, fish assemblages have reduced diversity and sensitive freshwater species decline in abundance, with some absent from survey samples.
|
4 |
Integrating membrane filtration forwater reuse in tissue millMoslehi, Ehsan January 2018 (has links)
Water is an essential and indispensable component is the pulp- and paper production industry.The increase in energy costs, stricter environmental regulations and water resource shortageshave caused a reduction of the water footprint in the industry as well as an increase in waterrecycling and water circuit closure. Reducing water usage requires an understanding of wherecontaminants originate, as well as which streams are critical to the process and how they impactmill operation. The recirculation of water can cause contaminant accumulation; therefore millsemploy technologies for water treatment in the internal water cycles, the so-called ‘kidneys’.Application of membrane technology is one such option which can improve the recycled waterquality and reduce contaminant buildup.The present study was carried out on a lab-scale for the treatment of a tissue mill effluent usingmembrane separation. A combination of pretreatment methods and various membranes werecompared with regards to separation, flux and fouling. The AlfaLaval M20 device was to treatwastewater samples sent from the mill, where the permeate was recirculated to the feed tank.COD and TOC levels are compared with regards to determining the separation efficiency. Thepermeate flux was measured over the two-hour filtration period, as well as flux recovery todetermine fouling levels. Additionally, some economic aspects of the process are discussed.This study suggests the potential application of a combination of flocculation or centrifugationpretreatment, with reverse osmosis membranes for recycling water to replace freshwater intake.The results also indicate the possibility of using ultrafiltration as kidneys to decreasecontamination buildup for further water loop closure.
|
5 |
Étude de l'épuration d'effluents de composition complexe par électrocoagulation et des couplages intervenants entre le traitement électrochimique et l'étape de séparation : application à l'industrie textile et papetière / Study of the sewage of a complex composition effluent by electrocoagulation and the coupled between the electrochemical treatment and the separation step : application to the textile and paper industriesZodi, Salim 22 March 2012 (has links)
L'électrocoagulation permet d'éliminer simultanément un large spectre de polluants organiques et minéraux, de colorants et de métaux lourds ; de ce fait, il a été beaucoup étudié. En revanche, peu de travaux ont été entrepris pour étudier de façon plus approfondie son fonctionnement. La complexité des effluents pour laquelle il est particulièrement intéressant d'utiliser ce procédé, fait aussi qu'il est difficile d'analyser les résultats. Cette thèse a pour objectif d'apporter une contribution à la compréhension du couplage électrocoagulation - décantation et des interactions liés à des effluents multi-polluants complexes. De plus l'aspect réacteur en continu a été abordé dans le cas d'un effluent synthétique simple pour mieux appréhender les différences par rapport au fonctionnement en discontinu. Cette étude est basée sur une approche systématique qui repose sur les processus élémentaires de l'électrocoagulation: Electrochimie, Coagulation et Séparation physique. Chaque processus fournit une base pour l'étude des interactions qui permettent ensuite la modélisation globale des processus. Afin d'étudier les couplages électrocoagulation-décantation, des effluents textiles industriels ont été traités par électrocoagulation suivie par une étape de décantation en éprouvette, sans agent floculant. L'effet des paramètres d'électrocoagulation sur la décantabilité des effluents traités et l'efficacité d'élimination de la pollution a été étudié en suivant en particulier la vitesse de décantation en éprouvette et en calculant le SVI. Le deuxième objectif de ce notre travail était d'étudier les couplages entre les différents types de pollution à éliminer et plus particulièrement un effluent de papeterie contenant des pollutions organiques et de l'arsenic. Enfin, nous avons réalisé une étude sur les performances du couplage EC-décantation pour le traitement d'un effluent synthétique textile en réacteur continu. Ce dernier est composé de deux éléments, la cellule électrochimique suivie d'une chambre de sédimentation / Electrocoagulation eliminates simultaneously a large spectrum of organic pollutants, dyes and heavy metals; therefore, it has been studied extensively. However, little work has been undertaken to investigate more thoroughly its behaviors. The complexity of the effluent for which it is particularly interesting to use this method also makes it difficult to analyze the results. This thesis aims to contribute to understanding the coupling electrocoagulation - settling and interactions associated with complex effluent multi-pollutants. Also a continuous reactor has been addressed in the case of a simple synthetic sewage to better understand the differences from the batch operation. This study is based on a systematic approach based on the elementary processes of electrocoagulation: Electrochemistry, coagulation and physical separation. Each process provides a basis for studying the interactions that then the overall modeling process. To study the electro-decantation couplings, industrial textile effluents were treated by electrocoagulation followed by a settling step, without flocculent. The effect of parameters on electrocoagulation settleability of treated effluent and removal efficiency of pollution has been studied in particular by following the settling velocity in the test tube and calculating the SVI. The second objective of this our work was to study the coupling between the different types of pollution and to eliminate a particular paper mill effluent containing organic pollutants and arsenic. Finally, we conducted a study on the performance of EC-coupling settling for the treatment of a synthetic textile effluent flow reactor. The latter is composed of two elements, the electrochemical cell followed by a settling chamber
|
6 |
Effects of Pulp and Paper Mill Effluent on Stream Primary Productivity in the Lower Sulphur River, TexasDavis, Terrence Marvin 08 1900 (has links)
Responses of periphyton and phytoplankton productivity in the lower Sulphur River (Texas-Arkansas) to bleach-kraft mill effluent (BKME) were monitored using in situ ¹⁴C incubation. Carbon assimilation rates measured downstream of mill discharge were substantially reduced from upstream levels. Periphyton and phytoplankton chlorophyll a concentrations remained relatively unchanged by the presence of BKME. Periphyton ash-free dry weight increased near the mill outfall, but decreased further downstream. Calculated productivity efficiencies (productivity:biomass) varied with variations in ¹⁴C rates. A laboratory bioassay was designed to determine the effect of BKME light-attenuation on photosynthetic rates of upstream Sulphur River periphyton and Selenastrum capricornutum Prinz. Pooled results of bioassay runs indicated a 20 per cent BKME concentration effectively reduced control ¹⁴C-assimilation levels by 50 per cent. The downstream reduction observed for in situ productivity was 5 per cent lower than that predicted by the color bioassay.
|
Page generated in 0.1113 seconds