Spelling suggestions: "subject:"para+"" "subject:"par+""
1 |
The role of bone morphogenetic proteins in the development of the vertebrate midbrainEom, Dae Seok 08 February 2011 (has links)
The purpose of the thesis is to explore the role of BMP signaling in developing vertebrate midbrain. BMP signaling plays important roles in various tissues and stages of neural development to regulate cell fate, proliferation, differentiation, morphogenesis and more. We observed that several major BMPs are expressed not only at the roof plate but also the floor plate of the midbrain. This has led us to ask the role of BMP signaling in dorsal and ventral midbrain patterning. Despite ventral experiments, we found that BMP signaling does not regulate ventral cell fate specification in the midbrain. Instead BMPs profoundly influence the shape and early morphogenesis of the midbrain neural plate as it closes into a neural tube.
During neural tube closure, one of the early events occurring at the ventral midline is median hinge point (MHP) formation. Failure to form MHP leads to neural tube closure defects, the 2nd most common birth defects in humans. However, the molecular mechanisms underlying MHP formation are not well known. We found that the lowest BMP signaling occurs at the MHP during early neurulation and BMP blockade is necessary and sufficient for MHP formation. Interestingly, we also demonstrated that BMP blockade directs MHP formation by regulating the apicobasal polarity pathway and this regulation may be mediated by biochemical interactions between pSMAD5 and the apical protein, PAR3. Additionally, our time-lapse data suggest that BMP blockade slows cell cycle progression by increasing duration of G1 to S transition and S phase which leads cell nuclei stay at the basal location longer. This mimics basal nuclear migration seen at the MHP where low BMP signaling occurs. Thus, we conclude that BMP signaling regulates neural tube closure via the apicobasal polarity pathway and in a cell cycle dependent manner at the ventral midline.
We observed that BMP signaling is necessary and sufficient for the dorsal cell fate specification in a context-dependent manner and ventral BMP signaling affects dorsal cell fates.
Taken together, we propose the idea that BMP signaling has distinct roles in different contexts. BMPs regulate tissue morphogenesis in the ventral midbrain and dorsally cell fate specification. / text
|
2 |
Exploring a role for a Par3/CaMKII protein complex in photoreceptor cell polarity and ciliogenesisEzhova, Yulia 05 1900 (has links)
Cell polarity is an essential property of adult neurons, which rely on asymmetric distribution of receptors and transmitters for proper signal propagation and cell function. In the retina, loss of photoreceptor (PR) polarity can lead to retinal dystrophies such as Leber Congenital Amaurosis, but the molecular mechanisms involved in regulating PR polarity remain unclear. A highly conserved protein complex involved in the establishment of cell polarity from C. elegans to mammals is the Par complex. Localized at the subapical region of polarized cells, it is composed of the “partitioning defective” PDZ domain-containing proteins Par3/Par6 and the atypical protein kinase C (aPKC). Although extensively studied in epithelial cells, the role of the Par complex in mammalian neurons remains poorly understood. Our unpublished results indicate that conditional inactivation (cKO) of Par3 in the developing retina interferes with the polarized growth of the photosensitive cilium at the apical tip of PR cells, eventually leading to PR degeneration. To uncover how Par3 might regulate ciliogenesis in PR cells, we immunoprecipitated Par3 from mouse retinal extracts and carried out mass spectrometry analysis. We found a cluster of calcium/calmodulin-dependent protein kinase II (CaMKII) proteins as potential Par3-interacting partners in the retina. CaMKII is one of the most abundant proteins found in the central nervous system, where it constitutes 1-2% of total proteins. While extensive studies have demonstrated the importance of CaMKII in long-term potentiation (LTP), long term depression (LTD) and dendrite arborisation, its role in cell polarity remains unknown. Using tagged versions of Par3 and CaMKIID, we validated their interaction in vivo and in vitro by co-immunoprecipitation. Interestingly, we found that CaMKIID localizes to the ciliary region of PRs, suggesting that Par3 might recruit CaMKIID at the apical membrane of PR cells, where it could be involved in ciliogenesis. To explore this hypothesis, we investigated whether dominant-negative or constitutively active forms of CaMKIID could impact cilia formation in PRs. Interestingly, overexpression of both mutant forms of CaMKIID during PR development resulted in shortening of the photosensitive cilia (outer segments), similar to what we observed in Par3 cKO retinas. This study suggests that a CaMKIID/Par3 protein complex regulates the establishment of PR cell polarity, raising the possibility that this complex may be generally involved in controlling neuronal polarity throughout the nervous system. / Le traitement et la propagation de l’information nerveuse repose sur une distribution
asymétrique de récepteurs et d’émetteurs à la surface de chaque neurone. Ce cloisonnement en
domaines sous-cellulaires distincts est également appelé polarité cellulaire. Dans la rétine, la
perte de polarité des photorécepteurs peut entraîner des dystrophies rétiniennes telle que
l'amaurose congénitale de Leber, mais les mécanismes moléculaires impliqués restent flous. Un
complexe protéique impliqué dans l'établissement de la polarité cellulaire, hautement conservé
de C. elegans aux mammifères, est le complexe PAR. Localisé au niveau de la région sous-apicale
des cellules polarisées, le coeur de ce complexe est constitué des protéines de la famille
partitioning defective Par3 / Par6 et de la protéine kinase C atypique aPKC. Bien que largement
étudié dans les cellules épithéliales, le rôle du complexe Par dans les neurones de mammifères
reste mal compris. Nos résultats indiquent que l'inactivation conditionnelle (cKO) de Par3 dans la
rétine de souris en développement interfère avec la croissance polarisée du cil photosensible à la
pointe apicale des cellules photoréceptrices (PR), conduisant finalement à une dégénérescence
des PRs. Pour découvrir comment Par3 pourrait réguler la ciliogenèse des PRs, nous avons
immunoprécipité Par3 à partir d'extraits rétiniens de souris et effectué une analyse par
spectrométrie de masse. Nous avons trouvé un ensemble de protéines appartenant à la famille
des calcium-calmoduline-dépendantes de la protéine kinase II (CaMKII) comme partenaires
potentiels de Par3 dans la rétine. Les CaMKII figurent parmi les protéines les plus abondantes du
système nerveux central où elles constituent 1 à 2% des protéines totales. Alors que des études
approfondies ont démontré l'importance de CaMKII dans la potentialisation et la dépression à
long terme (LTP et LTD), et l'arborisation des dendrites, son rôle dans la polarité cellulaire reste
inconnu. En utilisant des versions étiquetées de Par3 et CaMKIID, nous avons validé leur
interaction in vivo et in vitro par co-immunoprécipitation. Nous avons mis en évidence une
localisation de CaMKIID dans la région ciliaire des PR, suggérant que Par3 pourrait recruter
CaMKIID à la membrane apicale des cellules PR, où il pourrait être impliqué dans la ciliogenèse.
Pour explorer cette hypothèse, nous avons étudié si les formes dominantes négatives ou
constitutivement actives de CaMKIID pouvaient avoir un impact sur la formation des cils des PRs.
vii
La surexpression des deux formes mutantes au cours du développement des PRs a entrainé un
raccourcissement des segments externes, semblable à ce que nous avons observé dans les rétines
Par3 cKO. Cette étude montre qu'un complexe de protéines CaMKIID / Par3 pourrait réguler
l’établissement et le maintien de polarité des PRs, suggérant l’implication ce complexe dans le
contrôle de la polarité neuronale de l’ensemble du système nerveux central.
|
Page generated in 0.0415 seconds