• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deviation From Local Equilibrium During the Austenite to Ferrite Transformation in Steel-A Modelling Approach

Odqvist, Joakim January 2003 (has links)
This thesis highlights the role of phase interfaces on phasetransformations in metallic materials. The deviation from localequilibrium at the moving phase interface has been analysed interms of solute drag theory and finite interface mobility. Inparticular the planar growth of proeutectoid ferrite fromaustenite in steel has been studied. The deviation from localequilibrium is caused by dissipation of Gibbs energy bydiffusion inside the phase interface and interface friction. Inthe analysis the interface is divided into three zones and thethermodynamic and kinetic properties are assumed to varycontinuously across the interface. A new model suitable formulticomponent alloys is developed. The model reduces to thefamiliar solute drag model by Cahn under simplifyingconditions. It was demonstrated how the interface model couldbe combined with a method for calculating the volume diffusionin both the growing and parent phases. With this combination ofprocedures the changes in local conditions at the interface, asthe growth rate changes due to long-range diffusion, could bedemonstrated for the case of continuous cooling in an Fe-Nialloy. The critical limit for massive transformation in the Fe-Niand Fe-C systems was calculated and found to lie well below theT0 line for both systems. The calculated limit for Fe-Ni wascompared with a recent experimental study and reasonableagreement was found. For the Fe-C system the limit calculatedwith the present model was compared with a phase-field model.The two approaches showed qualitatively the same behaviour andthe quantitative difference was due to different assumptions onhow properties vary across the interface. Finally, an attempt to simulate the partitionless growth offerrite in austenite in the Fe-Ni-C system was performed. Inthe applied model the dissipation of Gibbs energy inside theinterface and in the nickel spike ahead of the migratinginterface were accounted for. The long-range diffusion ofcarbon in austenite was treated with an approximate analyticalgrowth equation. A continuous change from paraequilibriumconditions and quasi-paraconditions could be shown in anisothermal section of the Fe-Ni-C phase diagram. Partitionlessgrowth starts in a parabolic fashion but slows down. For alloysoutside the limit for quasiparaconditions partitionless growthis predicted to stop abruptly while for alloys inside thatlimit growth approaches a second parabolic growth law. However,the latter case should not be expected in practise because ofimpingement effects.
2

Deviation From Local Equilibrium During the Austenite to Ferrite Transformation in Steel-A Modelling Approach

Odqvist, Joakim January 2003 (has links)
<p>This thesis highlights the role of phase interfaces on phasetransformations in metallic materials. The deviation from localequilibrium at the moving phase interface has been analysed interms of solute drag theory and finite interface mobility. Inparticular the planar growth of proeutectoid ferrite fromaustenite in steel has been studied. The deviation from localequilibrium is caused by dissipation of Gibbs energy bydiffusion inside the phase interface and interface friction. Inthe analysis the interface is divided into three zones and thethermodynamic and kinetic properties are assumed to varycontinuously across the interface. A new model suitable formulticomponent alloys is developed. The model reduces to thefamiliar solute drag model by Cahn under simplifyingconditions. It was demonstrated how the interface model couldbe combined with a method for calculating the volume diffusionin both the growing and parent phases. With this combination ofprocedures the changes in local conditions at the interface, asthe growth rate changes due to long-range diffusion, could bedemonstrated for the case of continuous cooling in an Fe-Nialloy.</p><p>The critical limit for massive transformation in the Fe-Niand Fe-C systems was calculated and found to lie well below theT0 line for both systems. The calculated limit for Fe-Ni wascompared with a recent experimental study and reasonableagreement was found. For the Fe-C system the limit calculatedwith the present model was compared with a phase-field model.The two approaches showed qualitatively the same behaviour andthe quantitative difference was due to different assumptions onhow properties vary across the interface.</p><p>Finally, an attempt to simulate the partitionless growth offerrite in austenite in the Fe-Ni-C system was performed. Inthe applied model the dissipation of Gibbs energy inside theinterface and in the nickel spike ahead of the migratinginterface were accounted for. The long-range diffusion ofcarbon in austenite was treated with an approximate analyticalgrowth equation. A continuous change from paraequilibriumconditions and quasi-paraconditions could be shown in anisothermal section of the Fe-Ni-C phase diagram. Partitionlessgrowth starts in a parabolic fashion but slows down. For alloysoutside the limit for quasiparaconditions partitionless growthis predicted to stop abruptly while for alloys inside thatlimit growth approaches a second parabolic growth law. However,the latter case should not be expected in practise because ofimpingement effects.</p>
3

THE SOLUBILITIES OF CARBON AND NITROGEN IN IRON, NICKEL AND TITANIUM-BASED ALLOYS UNDER PARAEQUILIBRIUM CONDITIONS

Gu, Xiaoting January 2008 (has links)
No description available.
4

TRIBOLOGY OF 316L AUSTENITIC STAINLESS STEEL CARBURIZED AT LOW TEMPERATURE

O'Donnell, Lucas John 11 January 2010 (has links)
No description available.
5

Low Temperature Carburization of Ferritic Stainless Steels

Katz, Joshua H. January 2009 (has links)
No description available.
6

The Structural Evolution during Low Temperature Carburization of 17-7 Precipitation Hardened Stainless Steel

Chen, Chieh-Wen 30 January 2012 (has links)
No description available.
7

Phase Transformations Accompanying Low-Temperature Carburization of Martensitic Stainless Steels under Paraequilibrium Conditions

Lee, Chihoon 30 January 2012 (has links)
No description available.
8

Thermodynamics of Paraequilibrium Carburization and Nitridation of Stainless Steels

Dalton, John Christian 21 February 2014 (has links)
No description available.
9

Surface Hardening of Duplex Stainless Steel 2205

Dalton, John Christian 08 February 2017 (has links)
No description available.

Page generated in 0.065 seconds