• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 14
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Analysis of Zebrafish Paralogs, parla and parlb, by CRISPR-Cas9 Mediated Mutagenesis

Jung, Megan January 2017 (has links)
Parkinson’s disease is a highly prevalent multifactorial neurodegenerative disorder caused by a complex cascade of interactions between various genetic and environmental factors. Due to this, the majority of cases are termed idiopathic. However, about 10% of PD cases are due to defined genetic factors. Interestingly, both idiopathic and familial cases of PD share mitochondrial dysfunction as a central component in the pathology of the disease. The mitochondrial protease, presenilin-associated rhomboid-like (PARL), is one such Parkinson's disease-linked gene, and is associated with diverse processes including mitochondrial dynamics, active inhibition of unnecessary apoptosis and mitophagy in Drosophila and yeast. Here, I investigated the role of the two zebrafish parl paralogs, parla and parlb, through stable CRISPR-Cas9 mediated mutagenesis. I injected wild type embryos with sgRNAs targeting parla and parlb loci, successfully producing indel mutations in parlb and multi-exon deletions in parla at mutation efficiencies of 74% and 40%, respectively. Through whole mount in situ hybridization experiments against th1, I saw no change in dopaminergic (DA) neuron development displayed by parlb mutants compared to wild types. Injection of parla splice blocking morpholinos into parlb mutants indicates that proper DA neuron development may depend principally on Parla function and loss of both Parla and Parlb function increases larval mortality. These results suggest a negative epistatic relationship between the parl paralogs as seen by the more severe phenotype observed in the loss of both Parla and Parlb function compared to the individual effects.
2

BIOINFORMATIC AND EXPERIMENTAL ANALYSES OF AXOLOTL REGENERATION

Al Haj Baddar, Nour W. 01 January 2019 (has links)
Salamanders have an extraordinary ability to regenerate appendages after loss or amputation, irrespective of age. My dissertation research explored the possibility that regenerative ability is associated with the evolution of novel, salamander-specific genes. I utilized transcriptional and genomic databases for the axolotl to discover previously unidentified genes, to the exclusion of other vertebrate taxa. Among the genes identified were multiple mmps (Matrix metalloproteases) and a jnk1/mapk8 (c-jun-N-terminal kinase) paralog. MMPs function in extracellular matrix remodeling (ECM) and tissue histolysis, processes that are essential for successful regeneration. Jjnk1/mapk8 plays a pivotal role in regulating transcription in response to cellular stress stimuli, including ROS (reactive oxygen species). Discovery of these novel genes motivated further bioinformatic studies of mmps and wet-lab experiments to characterize JNK and ROS signaling. The paralogy of the newly discovered mmps and orthology of 15 additional mmps was established by analyses of predicted, protein secondary structures and gene phylogeny. A microarray-analysis identified target genes downstream of JNK signaling that are predicted to function in cell proliferation, cellular stress response, and ROS production. These inferences were validated by additional experiments that showed a requirement for NOX (NADPH oxidase) activity, and thus presumably ROS production for successful tail regeneration. In summary, my dissertation identified novel, salamander-specific genes. The functions of these genes suggest that regenerative ability is associated with a diverse extracellular matrix remodeling and/or tissue histolysis response, and also stress-associated signaling pathways. The bioinformatic findings and functional assays that were developed to quantify ROS, cell proliferation, and mitosis will greatly empower the axolotl embryo model for tail regeneration research.
3

Hub Proteins, Paralogs, and Unknown Proteins in Bacterial Interaction Networks

Sakhawalkar, Neha 01 January 2017 (has links)
Proteins are the functional units of cells. However, a major portion of the proteome does not have a known functional annotation. This dissertation explores protein -protein interactions, involving these uncharacterized or unknown function proteins. Initially, protein – protein interactions were tested and analyzed for paralogous proteins in Escherichia coli. To expand this concept further and to get an overview, protein – protein interactions were analyzed using ‘comparative interactomics’ for four pathogenic bacterial species including Escherichia coli, Yersinia pestis, Vibrio cholerae and Staphylococcus aureus. This approach was used to study unknown function protein pairs as well as to focus on uncharacterized hub proteins. The dissertation aims at using protein – protein interactions along with other research data about proteins as a possible approach to narrow down on functions of proteins.
4

Evolution and Expression of polyketide synthase gene in the lichen-forming fungal families Cladoniaceae and Ramalinaceae

Timsina, Brinda Adhikari January 2012 (has links)
Fungal polyketides are synthesized by polyketide synthases (PKS) encoded by PKS genes. The function of many PKS genes is unknown and the number of PKS genes exceeds the number of polyketides in many genomes. The lichen-forming fungi, Cladonia and Ramalina have chemical variants separated by habitat suggesting that environmental conditions may influence polyketide production. The goal of this thesis was to examine evolutionary relationships as a framework to investigate PKS gene function in the lichen-forming fungal families Cladoniaceae and Ramalinaceae. A phylogenetic analysis of the genus Ramalina (Chapter 2) using nuclear and mitochondrial ribosomal DNA sequences showed monophyly for seven species and included three species, which were not examined in phylogenies prior to this study. One monophyletic species, R. dilacerata was chosen for further tests of the effect of growing conditions on PKS gene expression (Chapter 3). Growth media containing yeast extracts produced the largest colony diameters and the fewest number of polyketides. A significant negative relationship occurred between colony diameter and number of secondary metabolites. Expression of two types of PKS genes was correlated with pH-level and media conditions that produced larger numbers of secondary products in R. dilacerata. A PKS gene phylogeny was constructed for 12 paralogs detected in members of the C. chlorophaea complex (Chapter 4) and gene selection was inferred using dN/dS estimations. The gene phylogeny provided evidence for independent origins and purifying and positive selection of PKS paralogs. This research provided insight into the evolution of PKS genes in the C. chlorophaea complex and identified potential genes that produce non-reduced polyketides present in C. chlorophaea. This thesis provided evidence for diversification of both morphological and chemical species and monophyly of previously unstudied Ramalina species. This research also supported theories of secondary metabolite synthesis based on growing conditions of R. dilacerata, and it revealed that PKS genes under selection in the Cladonia chlorophaea group provide the lichen with the adaptive capacity to survive under variable conditions. Knowledge of the ecological function of fungal polyketides can be valuable for conservation management and policy makers; and for understanding the potential pharmaceutical roles of these natural products.
5

The Roles of Danio Rerio Nrf2 Paralogs in Response to Oxidative Stress in the Pancreatic Beta Cell

Doszpoly, Agnes 06 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Oxidative stress can disrupt cellular homeostasis, leading to cellular dysfunction and apoptosis. The Nrf2 transcription factor regulates the antioxidant response in cells by binding to antioxidant response elements (ARE) in DNA and activating genes of enzymes that combat oxidative stress. During the pathogenesis of diabetes mellitus (DM), β-cells are exposed to increased amounts of reactive oxygen species (ROS) that cause oxidative stress. Zebrafish (ZF) are excellent models for studying the dynamic mechanisms associated with DM pathogenesis, and we recently developed a ZF model of β-cell apoptosis caused by ROS. Two paralogs of Nrf2 have been identified in ZF, Nrf2a and Nrf2b, but their roles in pancreas development and/or β-cell survival are unknown. To investigate their roles, Nrf2a and Nrf2b antisense morpholinos (MO) were injected into Day 0 ZF embryos and analyzed over time. While Nrf2a MO showed no obvious phenotypes compared to WT, Nrf2b MO exhibited reduced pancreas size and islets with disrupted morphology. Ins:NTR Nrf2a MO showed reduced β-cell loss upon exposure to Metronidazole (MTZ) under generation of ROS compared to WT. Sequence analysis of ZF nrf2b in 3-day post-fertilization (dpf) embryos revealed a novel splice variant containing an additional exon that has not been described. Further investigation of Nrf2a and Nrf2b is likely to yield additional insights regarding the function and regulation of the NRF2-signaling pathway and their roles in β-cell protection under oxidative stress.
6

Insights into Regulation of Human RAD51 Nucleoprotein Filament Activity During Homologous Recombination

Amunugama, Ravindra Bandara 15 December 2011 (has links)
No description available.
7

Role of XRCC3 in Acquisition and Maintenance of Invasiveness through Extracellular Matrix in Breast Cancer Progression

Saini, Siddharth 29 July 2010 (has links)
Acquisition of invasiveness through extracellular matrix is a crucial characteristic of transition to malignancy in the breast. It was previously shown that Polo-like kinase 1 (PLK-1), a mitotic kinase and genome stability regulator, is involved in acquisition of invasiveness in a breast cell model (HMT-3522 cell line) of pre-invasive to invasive transition. This and other data led to the suggestion that a new class of genes called GISEM for Genome Instability and Extracellular Matrix Invasiveness may exist. Previous lab data show that XRCC3 is found downregulated in progression from preinvasive to invasive phenotype. This led to the hypothesis that XRCC3 may be a negative regulator of invasion. To support this hypothesis, overexpression of XRCC3 in the invasive T4-2 cells downregulated invasion, but also growth. In order to verify the role of XRCC3 in invasiveness, and determine whether it is independent from any effects on growth, we tested the effect of downregulating XRCC3 on the invasiveness of T4-2 cells. Short-term downregulation of XRCC3 using siRNAs produced a significant increase in invasiveness, suggesting a role for XRCC3 as a negative regulator of invasion. During the invasion assay time course, XRCC3 downregulation had no effect on growth or apoptosis supporting the idea that this is a direct effect on invasion and not an artifact of the assay. XRCC3 is one amongst the five members of the RAD51 paralog family, consisting of accessory proteins or RAD51 cofactors (namely RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) which interact with each other to form complexes (BCDX2, BC, DX2 and CX3) that collaboratively assist RAD51 in homologous recombinational repair (HRR) of DNA double-strand breaks. To see if these interactions are important in terms of invasion, as they have been demonstrated for DNA repair, we studied the effect of XRCC3 downregulation on the levels of RAD51 paralogs. We found lowered levels of RAD51C, but not RAD51B or RAD51D, when XRCC3 was downregulated. Since XRCC3 forms the CX3 complex with RAD51C, we downregulated RAD51C using siRNAs in T4-2 cells and found this to significantly increase invasiveness. Consistent with previous findings by other groups, downregulating RAD51C also lead to decreased levels of XRCC3 in invasive T4-2 cells. These results suggest that the XRCC3-RAD51C interaction is important for invasion as well as the previously studied DNA repair function. In delineating the mechanism by which XRCC3 acts as a negative regulator of invasion, we further questioned if XRCC3 alters secreted factors that are important for the invasiveness of T4-2 cells and tested the effects of conditioned medium (CM) from XRCC3 altered T4-2 cells on parental T4-2 cells’ ability to invade. Results show a significant increase in invading T4-2 cells when suspended in CM from XRCC3 siRNA transfected T4-2 cells, suggesting a direct effect of XRCC3 siRNAs on the ability of T4-2 CM to induce invasiveness in T4-2 cells. Furthermore, we investigated the effects of XRCC3 inhibition on cell surface integrins and focal adhesion kinase (FAK). Indirect immunofluorescence results show increased formation of focal adhesions containing two phosphorylated FAK residues- autophosphorylated FAK-Y397 and FAK-Y861 (previously implicated in increased migration and invasion of tumor cells) in XRCC3 siRNA transfected T4-2 cells. Overall, these results support a new role of XRCC3 in invasion, in addition to its previously reported role in DNA repair. These findings imply that loss of XRCC3 function in cancer progression would upregulate invasion as well as downregulate DNA repair and genome stability. Therefore, stabilization of XRCC3 function could provide a promising therapeutic against breast cancer progression. The dual role of XRCC3 in invasion and DNA repair also renders it an attractive candidate risk biomarker of breast pre-cancer to invasive cancer progression.
8

Uncovering parallel ribosome biogenesis pathways during pre-60S subunit maturation

Aguilar, Lisbeth C. 01 1900 (has links)
Paralogs are present during ribosome biogenesis as well as in mature ribosomes in form of ribosomal proteins, and are commonly believed to play redundant functions within the cell. Two previously identified paralogs are the protein pair Ssf1 and Ssf2 (94% homologous). Ssf2 is believed to replace Ssf1 in case of its absence from cells, and depletion of both proteins leads to severely impaired cell growth. Results reveal that, under normal conditions, the Ssf paralogs associate with similar sets of proteins but with varying stabilities. Moreover, disruption of their pre-rRNP particles using high stringency buffers revealed that at least three proteins, possibly Dbp9, Drs1 and Nog1, are strongly associated with each Ssf protein under these conditions, and most likely represent a distinct subcomplex. In this study, depletion phenotypes obtained upon altering Nop7, Ssf1 and/or Ssf2 protein levels revealed that the Ssf paralogs cannot fully compensate for the depletion of one another because they are both, independently, required along parallel pathways that are dependent on the levels of availability of specific ribosome biogenesis proteins. Finally, this work provides evidence that, in yeast, Nop7 is genetically linked with both Ssf proteins. / Les paralogues sont présents lors de la biogenèse des ribosomes ainsi que dans les ribosomes matures sous forme de protéines ribosomiques, et sont généralement censées jouer des fonctions redondantes dans la cellule. Deux paralogues précédemment identifiées sont la paire de protéines Ssf1 et Ssf2 (94 % d'homologie). Ssf2 remplacerait Ssf1 en cas d’absence du dernier dans la cellule, et l’absence des deux protéines diminue la croissance cellulaire. Nos résultats révèlent que, dans des conditions normales, les paralogues Ssf s’associent à des ensembles de protéines similaires, mais avec différentes stabilités. De plus, la perturbation de leurs particules pré-rRNP à l’aide de tampons de haute stringence a révélé qu'au moins trois protéines, probablement Dbp9, Drs1 et Nog1, sont fortement associées à chaque protéine Ssf dans ces conditions, et très probablement représentent des sous-complexes distincts. Dans cette étude, les phénotypes cellulaires observés lors de la déplétion des protéines Nop7, Ssf1 et/ou Ssf2 ont révélé que les paralogues Ssf ne peuvent pas compenser entièrement pour la diminution de l'autre, car ils sont, indépendamment l’un de l’autre, nécessaires le long de voies de biogénèse ribosomale parallèles qui dépendent des niveaux de protéines impliqués dans la biogénèse des ribosomes disponibles. Enfin, ce travail fournit des preuves que, dans la levure, Nop7 est génétiquement lié aux deux protéines Ssf.
9

Ribozomálny proteín Rpl22 reguluje zostrih svojich vlastných transcriptov / Ribosomal protein Rpl22 regulates the splicing of its own transcripts

Nemčko, Filip January 2018 (has links)
Saccharomyces cerevisiae is an intron-poor organism with introns present in only 5% of its genes. The most prominent group of intron-containing genes are ribosomal protein (RP) genes. They are highly expressed and most of them are present as two paralogs. Parenteau et al. described the existence of intron- dependent intergenic regulatory circuits controlling expression ratios of RP paralogs. In this project, we did not confirm the regulation in 6 out of 7 tested regulatory circuits. We validated the regulation between RPL22 paralogs. We further showed that Rpl22 protein blocks the pre-mRNA splicing of both paralogs, with RPL22B paralog being more sensitive. Rpl22 protein binds to the stem-loop of RPL22B intron - disruption of the binding domain of Rpl22 proteins leads to loss of interaction. Moreover, the regulation seems to be working the same way in yeast Kluyveromyces lactis, which has only a single RPL22 copy. Overall, these results lead to better understanding of intergenic regulation, which adjusts the expression ratio between functionally different RPL22 paralogs. Key words introns, ribosomal protein genes, Rpl22, RPL22 paralogs, pre-mRNA splicing, Saccharomyces cerevisiae
10

Influência do gene PTEN na expressão de RAD51 e suas parálogas, RAD51C e RAD51B, em linhagens de glioblastoma multiforme tratadas com etoposídeo / PTEN gene Influence in expression of RAD51 and its Paralogs RAD51C and RAD51B, in Glioblastoma strains treated with Etoposide

Oliveira, Ana Clara 12 May 2016 (has links)
O Glioblastoma Multiforme (GBM) é o tipo de tumor cerebral maligno com maior incidência na população. A perda do gene PTEN (fosfatase e tensina homóloga) é uma alteração comum associada ao GBM (até 60%) e esse gene codifica uma enzima que antagoniza a ação de PI3K, inibindo a fosforilação de AKT e, desse modo, regulando vias de sinalização relativas à sobrevivência celular e proliferação. Mutações em PTEN têm sido associadas à instabilidade genômica e ao aumento no número de quebras de fita dupla, além de serem relacionadas também à redução da expressão de RAD51, a qual é uma proteína-chave da via de reparo por recombinação homóloga (HR). Diante disso, o objetivo deste estudo foi avaliar se o status de PTEN interfere na expressão de RAD51 e proteínas parálogas (RAD51C e RAD51B) e, consequentemente, se PTEN é capaz de influenciar a eficiência de HR. Com o objetivo de induzir a formação de quebras de fita duplas (DSBs) no DNA, as células foram tratadas com a droga antitumoral etoposídeo, que produz quebras no DNA, principalmente duplas (DSBs). Duas linhagens de GBM com status diferentes de PTEN foram utilizadas: T98G (PTEN mutado) e LN18 (PTEN tipo selvagem). As células de GBM foram tratadas com etoposídeo em diferentes experimentos ou ensaios: proliferação celular, quantificação da necrose e apoptose, cinética do ciclo celular, imunofluorescência da proteína ?- H2AX, quantificação dos níveis de expressão de RAD51 e parálogas e o silenciamento de PTEN na linhagem LN18. Os resultados mostraram que a linhagem LN18 foi mais sensível à droga nos tempos iniciais (24 e 72 h) (até 61,2% de redução), em comparação com a T98G (até 12,3% de redução); no tempo mais tardio de análise (120 h), ambas as linhagens sofreram redução acentuadana proliferação. Adicionalmente, a LN18 exibiu maior porcentagem de células apoptóticas e necróticas, em comparação com a linhagem T98G, nos tempos de24, 72 e 120 horas após o tratamento. O ensaio de imunofluorescência revelou maior indução de células positivas para ?-H2AX na linhagem LN18 em relação à T98G (p =<0,001), após tratamento com etoposídeo (50 e 75 ?M). Nessas concentrações, a análise da cinética do ciclo celular mostrou um bloqueio na fase G2 em ambas as linhagens (p<0,01) nos tempos analisados (24, 48 e 72h), mas apenas a linhagem LN18 revelou bloqueio na fase S. A expressão de RAD51, RAD51B e C foi mais elevada em LN18 em comparação com a T98G e U87MG, nas células tratados (75?M) e controles. PTEN foi silenciado (siRNA-PTEN) na linhagem LN18 para verificar se a redução da expressão desse gene reduziria também a expressão de RAD51 e parálogas. Após 72 horas de silenciamento, com 69,9% de inibição de PTEN, a expressão de RAD51 e RAD51C também se mostrou reduzida em relação ao grupo controle. Em conjunto, os resultados obtidos no presente estudo indicam que o status de PTEN é crucial para as vias de sobrevivência, controle do ciclo celular e indução de apoptose nas células de GBM, indicando a relação entre PTEN e RAD51 e parálogas nas células de GBM tratadas com um indutor de quebras no DNA. Adicionalmente, outras ferramentas de estudo são requeridas para investigar as vias moleculares e possíveis interações e complexos proteicos envolvendo a participação de PTEN e RAD51 e suas proteínas parálogas / Glioblastoma multiforme (GBM) is the most common malignant brain tumor. Loss of PTEN (Phosphatase and tensin homolog deleted on chromosome 10) gene is the most frequent alteration associated with GBM and encodes a phosphatase enzyme that antagonizes the PI3K, by inhibiting AKT phosphorylation thereby regulating signaling pathways related to cell survival and proliferation. PTEN deficiency has been associated with genomic instability and increased endogenous DSBs, as well as reduced expression of RAD51, which is a key gene with crucial role in HR. In this study, we aimed to evaluate whether the PTEN status in GBM cell lines can affect RAD51 expression and HR efficiency under conditions of treatment with the antineoplastic drug etoposide, which targets the DNA topoisomerase II enzyme, thus leading to the production of DNA breaks. T98G (PTEN mutated) and LN18 (PTEN wild-type) cells were treated with etoposide, and several assays were carried out: cell proliferation, detection and quantification of necrosis and apoptosis, cell cycle kinetics, immunofluorescence staining, RAD51 (and paralogs) protein expression, and PTEN silencing in LN18 cell line, by using the siRNA method. LN18 cells showed a greater reduction in cell proliferation, compared to T98G after treatments (25, 50, 75 e 100 µM) at 24, 72 and 120h. Both cell lines showed a significant increase (p=<0.001) in cell death induction, but LN18 presented a greater percentage of apoptotic and necrotic cells than T98G (24, 72 and 120h). The induction of DSB was analyzed by immunostaining (with ?-H2AX antibody), and for the concentrations (50 and 75 µM) tested, LN18 showed higher levels of ?-H2AX positive cells than that observed for T98G (p=<0.001). The analysis of cell cycle kinetics performed for cells treated with etoposide (50 and 75 µM) and collected at 24, 48 and 72h, LN18 presented a greater G2-blockage, as compared to T98G; only LN18 showed a blockage at the S-phase. The expression of RAD51, RAD51B and C was higher in LN18 compared to T98G and U87MG cells treated with etoposide (75 µM) and controls. When we silenced PTEN in LN18 linage, to check if PTEN silencing may reduce the expression of RAD51 and its paralogs, we found a 69.9% reduction in PTEN protein expressions, and the expression of RAD51 and RAD51C was also found reduced, compared to the control group. Taken together, the results obtained in this study indicate that the status of PTEN is critical for survival pathways, cell cycle control and induction of apoptosis in GBM cells, confirming the relationship between PTEN and RAD51 and its paralogs in GBM cells treated with an inducer of DNA breaks. These results contribute with relevant information for further studies on molecular pathways underlying the interaction between PTEN and RAD51 and its paralogs

Page generated in 0.0482 seconds