• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 98
  • 19
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 9
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 385
  • 385
  • 368
  • 95
  • 90
  • 90
  • 86
  • 56
  • 47
  • 42
  • 40
  • 36
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The Fabrication Of Polymer-derived Sicn/sibcn Ceramic Nanostructures And Investigation Of Their Structure-property Relationship

Sarkar, Sourangsu 01 January 2010 (has links)
Polymer-derived Ceramics (PDCs) represent a unique class of high-temperature stable materials synthesized directly by the thermal decomposition of polymers. This research first focuses on the fabrication of high temperature stable siliconcarbonitride (SiCN) fibers by electrospinning for ceramic matrix composite (CMC) applications. Ceraset™ VL20, a commercially available liquid cyclosilazane, was functionalized with aluminum sec-butoxide in order to be electrospinnable. The surface morphology of the electrospun fibers was investigated using the fibers produced from solvents. The electrospun fibers produced from the chloroform/N,N-dimethylformamide solutions had hierarchical structures that led to superhydrophobic surfaces. A “dry skin” model was proposed to explain the formation of micro/- and nanostructures. The second objective of the research is to align the multiwalled carbon nanotubes (MWCNTs) in PDC fibers. For this purpose, a non-invasive approach to disperse carbon nanotubes in polyaluminasilazane chloroform solutions was developed using a conjugated block copolymer synthesized by ATRP. The effect of the polymer and CNT concentration on the fiber structure and morphology was also examined. Detailed characterization using SEM and TEM was performed to demonstrate the orientation of CNTs inside the ceramic fibers. Additionally, the electrical properties of the ceramic fibers were investigated. Finally, the structural evolution of polymer-derived amorphous siliconborocarbonitride (SiBCN) ceramics with pyrolysis temperatures was studied by solid-state NMR, Raman and EPR spectroscopy. Results suggested the presence of three major components: (i) hexagonal boron nitride (h-BN), (ii) turbostratic boron nitride (t-BN), and (iii) BN2C groups in the final ceramic. iv The pyrolysis at higher temperature generated boron nitride (BN3) with a simultaneous decomposition of BN2C groups. A thermodynamic model was proposed to quantitatively explain the conversion of BN2C groups into BN3 and “free” carbon. Such structure evolution is believed to be the reason that the crystallization of Si4.0B1.0 ceramics starts at 1500 ° C, whereas Si2.0B1.0 ceramics is stable upto 1600 ° C.
162

Paramagnetic Transition Metal Ions on Oxide Surfaces: an EPR Investigation

Liao, Yu-Kai 18 September 2023 (has links)
A long standing problem in catalysis is the identification and characterization of the active sites, i.e. an atom or an ensemble of atoms spouse on the surface of a catalyst.[Taylor1925] One relevant case, that is treated in this thesis, is constituted by the Phillips catalyst.[Hogan1958] For several reasons, even though this catalyst has be applied at industrial scale for decades and is accounted for a majority of the high density polyethylene (HDPE) production, the identification and the mechanism of the active sites are still under debate. This work was initiated in the framework of the PARACAT project, which is dedicated to study the paramagnetic species in catalysis, and focuses on 'The role of Cr paramagnetic states in olefin polymerization over Phillips catalyst.' In the course of the study, I brought this research to a larger scale which included but was not limited to the Phillips catalyst itself. Considering the relevance of the interaction between transition metal ions (TMI) and the support to the catalytic activity, I worked on systems that cover a number of oxide-supported TMIs by means of electron paramagnetic resonance (EPR) spectroscopy. In this thesis I investigated the paramagnetic Cr(V) and Cr(III) species in the Phillips catalyst. The Cr(III) species were suggested with possible relevance to the catalytic reaction while Cr(V) species were suggested as just the spectators in the reaction.[McDaniel2010, Groppo2018] Nevertheless, Cr(V) species were used in this work as spin probes to provide more information on the overall system. Field-sweep methods including continuous wave (CW) EPR and echo detected field sweep (EDFS) showed that the there are two Cr(V) species with different local geometries. Quantitative analysis of the CW EPR showed that these two Cr(V) species have different reactivity with ethylene. The instantaneous diffusion analysis were performed on the Cr(V) species to provide information on the dispersion of the Cr on the silica surface and the results suggested clusters were formed locally. Besides studying the Phillips catalyst itself, I studied also the silica supported organometallic-Cr catalyst, Cr[CH(SiMe3)2]3/SiO2, which served as a model system to investigate the catalytic active Cr species with well-defined oxidation states and geometry. Two categories of the Cr(III) species were assigned to the active sites for olefin oligomerization and polymerization. The assignment were done by comparing their distortion of the local geometries with that of the different precursors. On the other hand, microporous materials including zeolites and zeotype materials such as aluminophosphate (AlPO) can be engineered with different physical and chemical properties in terms of chemical composition and provide a relevant example of structure sensitivity of a heterogeneous catalyst.[Hartmann2002, Hartmann1999] Such structure sensitivity is highly relevant in catalysis and can be very well studies with EPR spectroscopy. In this regard, I investigated a series of SAPO-5 materials doped with different TMI. In the first place, the incorporation of Cr in SAPO-5 was studied focuses on the discrimination of isomorphous substitution at framework sites and extra-framework sites. In the hyperfine sublevel correlation (HYSCORE) spectrum, large hyperfine interaction (hfi) of 27Al with the matrix 31P signal provide solid evidence for the isomorphous substitution of Cr(V) at framework sites. In addition to the Cr-incorporated SAPO-5, a method to prepare a bi-metallic Mo/V-SAPO-5 system was developed and the metal-metal synergy was validated with a single electron transfer reaction and the short range hyperfine interaction. HYSOCRE spectra showed large \textit{hfi} of both 27Al and 31P and suggested the V species grafted at extra-framework sites. Moreover, the HYSCORE spectrum showed signals at low frequency region which were attributed to the 95,97Mo species with large hfi, confirming the short range interaction. Finally, the surface properties of SAPO-5 were studied by adsorbing NO radicals in the pores and investigating their interaction with the surface. Different adsorption sites of NO molecules according to different activation conditions were first discriminated by the g-factors obtained from the CW EPR. From the 27Al HYSCORE spectra, it is observed that when the activation temperature is higher the NO molecules are situated in vicinity of some defect Al sites. However, the dominant Al species were observed either in samples activated at lower temperature or by increasing the NO dosage. This is postulated as that the defect sites were blocked by residual water molecules or saturated by excessive NO molecules. The presence of water molecules were validated by 1H HYSCORE experiments and the coordination of NO-water was estimated from the hfi structure. [Taylor1925] Taylor, H. S. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 1925, 108, 105-111 [Hogan1958] Hogan, J. P.; Banks, R. L. Polymers and production thereof US Patent 2,825,721, 1958. [McDaniel2010] McDaniel M. P. Advances in Catalysis, 1st Ed. 2010; Vol. 52, pp 123-606 [Groppo2018] Groppo, E.; Martino, G. A.; Piovano, A.; Barzan, C. ACS Catal. 2018, 8, 10846-10863 [Hartmann2002] Hartmann, M.; Kevan, L. Res. Chem. Intermed. 2002, 28, 625-695 [Hartmann1999] Hartmann, M.; Kevan, L. Chem. Rev. 1999, 99, 635-663
163

FEW ELECTRON PARAMAGNETIC RESONANCES DETECTION TECHNIQUES ON THE RUBY SURFACE

Li, Xiying 14 July 2005 (has links)
No description available.
164

Nitric oxide donors and superoxide probes: synthesis and properties

Lu, Dongning 27 August 2009 (has links)
No description available.
165

Low-field EPR studies of optically excited aromatic triplets oriented in single-crystal hosts /

Lundstedt, Alan Paul January 1984 (has links)
No description available.
166

EPR and luminescence of rare earth ions in single crystal La2O2S /

Jewett, John W. January 1974 (has links)
No description available.
167

Spectroscopic studies of Cobalt ions in gamma irradiated KMgF 3 single crystals.

Aked, Nicholas Henry January 1973 (has links)
No description available.
168

Boundary current response in Ba0.34K0.64Fe2As2 superconducting single crystal probed by non-resonant microwave absorption technique

Ramashitja, Tshiwela Caroline 06 1900 (has links)
Non-resonant microwave absorption (NRMA) in superconducting materials has become a new experimental technique to probe and understand superconducting materials. For example cuprate superconductors are well studied with this technique. At the same time the technique is also evolving. This technique (NRMA) has been used to study magnetic shielding effects/boundary current in Ba0.34K0.64Fe2As2 (BaK122) single crystals of iron pnictides superconducting sample measured at 9.4 GHz below TC (4.2K-32K). It has been observed that a small modulation field used in NRMA experiment yield the boundary current response. We have established that the boundary current response depends on both modulation amplitude and the temperature. At high modulation field amplitudes and temperatures close to Tc the boundary current response gets suppressed and flux modulated response dominates. At low temperatures far away from Tc, only the boundary current response dominates. / Physics / M. Sc. (Physics)
169

Analysis of free radical characteristics in biological systems based on EPR spectroscopy, employing blind source separation techniques

Ren, Jiyun., 任紀韞. January 2006 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
170

Ensemble based quantum memory and adiabatic phase gates in electron spins

Wu, Hua January 2011 (has links)
Quantum computing has been a new and challenging area of research since the concept was put forward in 1980s. A quantum computer is a computer that processes information encoded in systems that exhibit quantum properties and is proved in theory to be more powerful than classical computers. Various approaches to the implementation of the quantum computers have been studied over the decades, each of them having their own advantages and disadvantages in terms of the lifetime of the quantum information, processing time, and scalability of the implementation. Proposals for hybrid quantum processors are interesting because they benefit from the advantages of each comprising system, and thus providing a promising approach to a practical quantum computer. In this thesis, I demonstrate experimentally the principle of utilizing electron spin ensembles as a quantum memory for hybrid quantum processors. I demonstrate the storage and on-demand retrieval of multiple bits of quantum information into and from a single electron spin ensemble by applying magnetic field gradient pulses. I then study the coupling between an electron spin ensemble and a three-dimensional microwave cavity, in the aim of discussing the condition for the coherent information transfer between the excitations in solid-state matter and photons. As an alternative to the high power pulses in electron paramagnetic resonance (EPR), I study the possibility of controlling the electron spin states via adiabatic processes. I demonstrate the implementation of adiabatic geometric phase gates in electron spins and compare their performances to other phase gates achieved with microwave pulses in both simulation and experiment, verifying the robustness of the adiabatic gates against certain type of noises. Finally I present the simulation method developed for simulating the pulsed EPR experiments in this thesis, using a model more general than some currently-existing simulation packages.

Page generated in 0.1224 seconds