• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing Microscopic Toll Plaza Model Using Paramics

Nezamuddin, Nezamuddin 01 January 2006 (has links)
Simulation modeling is the most cost-effective way of studying real life transportation problems, either existing or anticipated, without disturbing the balance of the transportation system. There is a vast suite of simulation models available in market, ready to choose from macroscopic, mesoscopic, or microscopic in nature, to study different transportation system elements like freeways, highways, signalized and un-signalized intersections. However, most of these network simulation models, like PARAMICS, VISSIM, CORSIM … etc, do not come readily available with built in toll plaza models. On the other hand, many researchers have independently developed toll plaza models, which can only model an isolated toll plaza without the road network. These toll plaza models, which are based on queuing theory (and some are macroscopic in nature), do not take into account headway, gap acceptance, or inter-vehicle interaction to follow a lead car or to perform lane changing maneuvers. Vehicles just upstream of the toll plaza are assigned to one of the toll lanes, solely based on the payment method (manual, automatic coin machine, or electronic toll collection) and queue lengths at the toll lanes. For instance, if a vehicle is traveling in the leftmost lane and the rightmost toll lane has the shortest queue length, then the queuing model will assign this vehicle to the rightmost lane, and the vehicle will do unrealistic maneuvering to reach to the assigned toll lane instantly. Microscopic network simulation models simulate the vehicular movements based on lane-changing and car-following rules. If such a model could be customized to serve the purpose of the toll plaza simulation, it will simulate the vehicular movements just upstream and downstream of the toll plaza more realistically. Being a network simulation model, it can also model the road network integrated with the plaza, which can be used to study the entire toll road corridor, unlike the isolated toll plaza models. In addition to being a microscopic network simulation model, PARAMICS has many simulation tools, which can be customized to develop a network model with enhanced toll plaza simulation capabilities. PARAMICS also provides the flexibility of using an aerial picture of the toll plaza and upstream/downstream sections of the road as overlay, to ensure that the toll plaza model operates under similar geometric conditions as the real plaza. Using an overlay, exact details of the transition area can be fed into the model. In real life, there is a smooth transition (in terms of the number of lanes and the width of the roadway) from the uniform free-flowing section of the roadway to the toll plaza. Detailed representation of the transition area, in terms of geometry and curb of the roadway along with the number of lanes, is essential for a realistic toll plaza simulation. This kind of detail is not available in a queuing model. As the roadway approaches the toll plaza, it contains more lanes compared to its upstream segments. However, in a simulation model vehicles have a tendency to maintain the same old lanes, and the newly added lanes remain unoccupied by the vehicles. Next-lane Allocation feature in PARAMICS can be used to map upstream lanes onto downstream lanes, preventing this unrealistic behavior from occurring in the simulation model. It tells the vehicles in a particular upstream lane to choose from one or more of the downstream lanes as per the settings. Next-lane allocation can be used in such a manner that all the downstream lanes are utilized. PARAMICS has several other tools such as Restrictions Manager, Vehicle Type Manager, Lane-choices Rules, HOV Lanes, and Vehicle Actuated (VA) Signals which can be used in combination to build a toll plaza model. A microscopic 'Holland East Plaza - SR408' network model has been developed using PARAMICS V5.1. This model contains the plaza and the downstream section of SR 408 Westbound till I-4 interchange in downtown Orlando. This model has been successfully calibrated and validated for the mainline toll plaza and ramp volumes for year 2004. Several hypothetical incident scenarios were simulated to study an entire corridor from the toll plaza to Interstate 4. It was found that the volumes on I-4 off-ramp and SR 408 mainline were affected the most under incident conditions. Volumes for other ramps were not affected in the same proportions. An incident on mainline toll road affected the throughput of the plaza significantly, but the same is not true for an incident on an off-ramp. Travel times to I-4 off-ramps and SR 408 thru lanes were the most sensitive in each of the incident scenarios. In case of the elimination of tolls during the hurricane evacuation, the throughput of the plaza increased significantly. Travel times for the vehicles coming through the plaza and going to different destinations decreased significantly, while it increased for vehicles using on-ramps, because of their inability to merge in the mainline traffic due to the increased toll road volume. The developed model in this thesis has the potential of transportation network wide applications with multiple toll plazas.
2

Development of the traffic simulation model for the UCF campus using PARAMICS

Ramasamy, Shankar 01 October 2002 (has links)
No description available.
3

Intersection Performance and the New Zealand Left Turn Rule

Wilkins, Anna Jane January 2008 (has links)
This thesis reports the use of Paramics microscopic simulation software to model the differences between the performance of ten Christchurch intersections under the existing New Zealand road rule which requires left turning vehicles to give way to vehicles turning right into the same road, and a changed rule that would see the right turning vehicle have priority. Previous research concerning this issue is reviewed and the history of the existing road rule and recent moves to change it are discussed. At each of the ten intersections a range of traffic volume combinations was assessed and the journey times and queue lengths were compared. The ten intersections represent a range of different layouts and forms of control including give way signs, stop signs and traffic signals. The impact of a rule change on the use of shared lanes at intersections using a Paramics model of the Christchurch Central Business District, as developed for the Christchurch City Council, is also reported. Conclusions are drawn about which types of intersections and traffic volume combinations are likely to be affected by a rule change. The features of intersections that contribute to this susceptibility are identified and conclusions drawn about whether positive or negative effects are likely. It is concluded that there is no compelling intersection performance reason why the rule could not be changed. The successful implication of such change would require a review of the road network to identify critical intersections. Some monitoring and mitigation measures may also be required.
4

Uso de Herramientas de Microsimulación para la Definición de Estrategias de Control de Tránsito para la Ciudad de Santiago

Zúñiga Alarcón, Victor Ignacio January 2010 (has links)
El objetivo general del presente trabajo de título es comparar las herramientas de microsimulación de tráfico AIMSUN y PARAMICS tanto en aspectos teóricos como en la aplicación de estrategias de control de tránsito para la ciudad de Santiago. En el diseño y evaluación de medidas de gestión de tráfico, la aplicación de simuladores resulta fundamental, en particular, los modelos de microsimulación de tráfico son una herramienta poderosa para cuantificar los impactos sobre el funcionamiento de la red vial en casos donde no es posible encontrar resultados analíticos, y además permiten apreciar visualmente sus efectos Una vez seleccionado un modelo de simulación, se debe realizar la calibración del modelo en orden de ajustar los resultados de la simulación a la información observada. Entre los resultados obtenidos de la calibración del transporte privado, destaca el hecho que los parámetros de AIMSUN y PARAMICS tienen una sensibilidad similar al indicador de rendimiento de calibración utilizado. Los parámetros más relevantes en el comportamiento vehicular en el microsimulador de tráfico AIMSUN son la velocidad deseada y el tiempo de reacción, mientras que en el microsimulador de tráfico PARAMICS son el headway promedio, el tiempo de reacción y el gap mínimo. Para la comparación de los microsimuladores de tráfico mencionados, se evaluaron diferentes escenarios en distintos lugares de la ciudad de Santiago, así como experimentos simples de simulación. Se concluye de este trabajo que el microsimulador de tráfico PARAMICS es más sensible en zonas de alta demanda vehicular y su modelo de asignación dinámico responde mejor en situaciones no predictivas. Por otra parte, el modelo AIMSUN tiene características que lo hacen más amigable al usuario, aborda de mejor manera el control semafórico de una red y su velocidad de procesamiento de simulación es más rápido que el de PARAMICS. Se menciona finalmente que tanto AIMSUN como PARAMICS han desarrollado avanzados módulos especiales (API, Appliaction Programming Interface) para incorporar aplicaciones externas que los ayudarían a superar algunas de sus limitaciones.
5

Using Micro-Simulation Modeling to Evaluate Transit Signal Priority in Small-to-Medium Sized Urban Areas; Comparative Review of Vissim and S-Paramics Burlington, Vermont Case Study

Tyros, Joseph C 01 January 2012 (has links) (PDF)
With many advances in transportation technology, micro-simulation models have proven to be a useful tool in transportation engineering alternative analyses. Micro-simulation software packages can be used to quickly and efficiently design new transportation infrastructure and strategies, while helping transportation planners and traffic engineers identify possible problems that might arise in a particular design alternative. Over the years these simulation packages have become more advanced, and their capabilities in terms of modeling complex, intricate intersections and producing useful outputs for analysis have increased. Today’s simulations can reproduce many facets of transportation design alternatives while generating outputs that help increase efficiency, reduce cost, optimize financing, and improve safety. Recently micro-simulation models have been employed in the analysis and design of alternative transit signal priority (TSP) strategies. This research reviews the similarities, differences and functional capabilities of two micro-simulation software packages: 1) VISSIM, and 2) S-Paramics. A special effort is made to discuss the usefulness of each package when used to analyze TSP alternatives for small and medium sized urban areas, where data and staff availability are typically limited. The paper includes a case study of Burlington, Vermont in which each software package is employed to evaluate several alternative TSP strategies. Each package is evaluated in terms of ease of use, usefulness of outputs, and consistency of results. The results of the evaluation are intended to guide planners and traffic engineers in small and medium urban areas in the selection of an appropriate simulation package for TSP analysis and design.
6

Diseño e Implementación de un Framework Integrado para Simulaciones de Sistemas Inteligentes de Transporte en OMNeT ++ y Paramics : Memoria para optar al grado de Ingeniero Civil en Computación

Olguín Muñoz, Manuel Osvaldo January 2017 (has links)
El presente trabajo de memoria presenta el diseño, implementación y validación de unframework de integración de un simulador de transporte, Quadstone Paramics con un simuladorde redes comunicaciones inalámbricas, OMNeT++, para la simulación y estudio deSistemas Inteligentes de Transporte.Los Sistemas Inteligentes de Transporte surgen como una respuesta a la necesidad de optimización, modernización y mejoramiento de los actuales sistemas de transporte. Los Sistemas de Transporte Inteligente pretenden proveer servicios innovadores que otorguen información a los usuarios y les permitan utilizar el sistema de transporte de manera más segura, coordinada e inteligente. Resulta fundamental la recopilación y transmisión de información enestos sistemas, lo cual se realiza mediante implementación de redes comunicación inalámbrica,tanto entre vehículos como entre vehículos e infraestructura. Es necesario entonces eldesarrollo de entornos de software de modelamiento y simulación de estos sistemas, para suestudio previo a su implementación en el mundo real.Este trabajo de memoria presenta un framework que posibilita la simulación y análisis delos Sistemas Inteligentes de Transporte. PVEINS, como se denomina el software desarrollado,permite el estudio de la integración bidireccional de un sistema de transporte con un sistemade comunicaciones inalámbricas. En ese sentido, el framework permite determinar tanto elimpacto de la comunicación entre vehículos sobre el modelo de transporte, como el impactodel movimiento de los vehículos sobre el medio de comunicación entre estos.Adicionalmente, el presente trabajo de memoria presenta un análisis de eficiencia del softwaredesarrollado, y un estudio para verificar su validez para la simulación de sistemas detransporte de alta complejidad. Los resultados son positivos y demuestran que PVEINS tieneel potencial para posicionarse como una opción competitiva para la simulación de SistemasInteligentes de Transporte en la academia. En particular, se demuestra su eficiencia parasimular grandes sistemas de transporte ejecutando un escenario de 15 minutos de tiemposimulado, con aproximadamente 900 vehículos presentes en la red en cada instante de simulación, en apenas 11 minutos de tiempo real. Se demuestra también su austeridad en uso de recursos del sistema al realizar una simulación con un promedio de 1400 nodos utilizando menos de 600 MB de memoria RAM y menos del 20% de la capacidad total del procesador. Finalmente, se expone su utilidad para el análisis y estudio de Sistemas Inteligentes de Transporte extrayendo información y estadísticas de los escenarios simulados.

Page generated in 0.0855 seconds