11 |
THE PHYSIOLOGICAL ACTIONS OF ADIPONECTIN IN CENTRAL AUTONOMIC NUCLEI: IMPLICATIONS FOR THE INTEGRATIVE CONTROL OF ENERGY HOMEOSTASISHOYDA, TED 13 April 2010 (has links)
Adiponectin regulates feeding behavior, energy expenditure and autonomic function through the activation of two receptors present in nuclei throughout the central nervous system, however much remains unknown about the mechanisms mediating these effects. Here I investigate the actions of adiponectin in autonomic centers of the hypothalamus (the paraventricular nucleus) and brainstem (the nucleus of the solitary tract) through examining molecular, electrical, hormonal and physiological consequences of peptidergic signalling.
RT-PCR and in situ hybridization experiments demonstrate the presence of AdipoR1 and AdipoR2 mRNA in the paraventricular nucleus. Investigation of the electrical consequences following receptor activation in the paraventricular nucleus indicates that magnocellular-oxytocin cells are homogeneously inhibited while magnocellular-vasopressin neurons display mixed responses. Single cell RT-PCR analysis shows oxytocin neurons express both receptors while vasopressin neurons express either both receptors or one receptor. Co-expressing oxytocin and vasopressin neurons express neither receptor and are not affected by adiponectin. Median eminence projecting corticotropin releasing hormone neurons, brainstem projecting oxytocin neurons, and thyrotropin releasing hormone neurons are all depolarized by adiponectin. Plasma adrenocorticotropin hormone concentration is increased following intracerebroventricular injections of adiponectin.
I demonstrate that the nucleus of the solitary tract, the primary cardiovascular regulation site of the medulla, expresses mRNA for AdipoR1 and AdipoR2 and mediates adiponectin induced hypotension. Adiponectin has electrical effects on a majority of medial solitary tract neurons and depolarizes those expressing mRNA for the hypotensive neuropeptide Y, revealing a central mechanism to modulate blood pressure.
Finally, I show that adiponectin controls paraventricular nucleus neuron excitability by either inhibiting a tetraethyl ammonium-sensitive potassium current thereby depolarizing neurons or activating a glibenclamide-sensitive voltage independent potassium current hyperpolarizing neurons. Therefore, adiponectin differentially modulates potassium current to confer its central effects.
These results are the first to show the physiological and electrical actions of adiponectin on individual neurons in blood brain barrier protected central autonomic nuclei. This thesis provides a framework for how adiponectin acts centrally to coordinate whole body energy homeostasis and feeding behavior in the rat. / Thesis (Ph.D, Physiology) -- Queen's University, 2009-09-15 16:50:13.933
|
12 |
An electrophysiological study of the projection from the paraventricular nucleus of hypothalamus to the cardiovascular neurons in the rostral ventrolateral medulla of the rat /Wong, Tak-pan. January 1994 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1995. / Includes bibliographical references (leaf 84-110).
|
13 |
Evaluating techniques in tissue clarification using CLARITY imaging and investigating where sodium is sensed in the bodyNeal, Christopher Matthew 08 April 2016 (has links)
OBJECTIVE: Previous studies have shown the significant contribution of sympathoinhibition in response to sodium loading to prevent increases in mean arterial blood pressure in salt resistant phenotypes. It has also been shown that brain Gαi2 protein gated signal transduction plays a major role in this pathway, however, the specific mechanisms through which this pathway is activated remain less well understood. The purpose of this study was to elucidate the relative contribution of increased sodium in either the plasma or the cerebrospinal fluid (CSF) to the regulation of mean arterial pressure and natriuresis. Additionally we explored the potential for using the novel CLARITY Imaging technique to identify the relative activity of neurons in areas of the brain thought to play a major role in body fluid homeostasis in response to salt.
METHODS: Rats that were pre-treated with either scrambled or Gαi2 oligodeoxynucleotides (ODN), to selectively down regulate brain Gαi2 proteins, were challenged either peripherally or centrally with sodium. Upon sodium loading physiological parameters were measured for two hours after which the animal's brains were recovered for immunohistochemical (IHC) analysis of the paraventricular nucleus, a known regulatory center for body fluid homeostasis and blood pressure regulation.
Additionally we adapted a version of the published CLARITY Imaging protocols for optically clearing tissue through application of electrophoretic tissue clearing (ETC) to a larger rat model.
RESULTS: In scrambled ODN pre-treated rats we observed a temporary increase in MAP in response to both the peripheral and central sodium challenge. In the Gαi2 ODN pre-treated animals we saw some form of attenuation to this response in both studies, however, where in the peripheral challenge there was an increase in the amount of time that it took the rats to return to normotension with no alteration in natriuresis, in the central challenge there was a large attenuation in natriuresis with no differences in the time to return to baseline MAP. Our IHC analysis also showed a decrease in neuronal activation of paraventricular medial parvocellular neurons in Gαi2 pre-treated rats that were challenged peripherally vs their SCR pre-treated counterparts. No such difference was observed in either of the pre-treatment groups from the central sodium challenge study.
In the CLARITY study we found that it is possible to adapt the method for optically clearing tissue to the larger model, however, we encountered several issues related to tissue swelling and peripheral tissue damage.
CONCLUSION: Based on our current results it seems evident that there are at least two different mechanisms that activate the cardiovascular regulatory control centers in the brain that prevent long term increases in mean arterial pressure in response to increased salt. It also appears that these two different mechanisms are triggered either by increases in plasma or CSF salinity, though which of these two mechanisms may be directly responsible for the development of salt sensitive hypertension requires further investigation.
While we had some success at optically clearing larger tissue volumes through ETC, problems we encountered with maintaining tissue integrity for investigations of intact neural networks prevented us from applying this technique, in its current form, to our investigation of salt sensitive hypertension.
|
14 |
Beacon/Ubiquitin-Like 5-Immunoreactivity in the Hypothalamus and Pituitary of the MouseBrailoiu, G. Cristina, Dun, Siok L., Chi, Michelle, Ohsawa, Masahiro, Chang, Jaw Kang, Yang, Jun, Dun, Nae J. 12 September 2003 (has links)
Beacon is a 73-amino acid peptide encoded by a novel gene in the hypothalamus of Israeli sand rat Psammomys obesus. Reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemical techniques were used to investigate the presence of beacon mRNA and the distribution of beacon-immunoreactivity (irBC) in the hypothalamus of ICR mice. RT-PCR experiments revealed beacon mRNA in the mouse hypothalamus. Using a rabbit polyclonal antiserum directed against the synthetic C-terminal peptide fragment (47-73), irBC was detected in the mouse hypothalamus and pituitary. In the hypothalamus, irBC was concentrated in perikarya of the supraoptic (SO), paraventricular (PVH) and accessory neurosecretory nuclei and in cell processes of the median eminence and pituitary stalk. In the pituitary, irBC was noted mainly in the posterior lobe. Double-labeling the hypothalamic sections with guinea-pig vasopressin-antiserum or mouse monoclonal oxytocin-antibody and beacon-antiserum revealed that <30% of vasopressin-immunoreactive neurons and nearly all oxytocin-immunoreactive neurons in the PVH and SO were irBC. The result shows the presence of beacon mRNA in the mouse hypothalamus, and the distribution of irBC is distinctively different from that reported in the hypothalamus of Psammomys obesus, but similar to that of the Sprague-Dawley rats described in our earlier study. More interestingly, Blast search uncovered a 73-amino acid peptide, human ubiquitin-like 5, which has the same exact sequence as beacon. Thus, irBC observed in the mouse brain could be that of ubiquitin-like 5.
|
15 |
Apelin-Immunoreactivity in the Rat Hypothalamus and PituitaryBrailoiu, G. Cristina, Dun, Siok L., Yang, Jun, Ohsawa, Masahiro, Chang, Jaw Kang, Dun, Nae J. 26 July 2002 (has links)
With the use of an antiserum against human apelin-36, apelin-immunoreactivity (irAP) was detected in neurons and cell processes of the supraoptic nucleus (SO), paraventricular nucleus (PVH), accessory neurosecretory nuclei (Acc) and suprachiasmatic nucleus. Strongly labeled cells/processes were noted in the internal layer of the median eminence, infundibular stem, anterior and posterior pituitary. Double-labeling the sections with goat polyclonal neurophysin I-antiserum and rabbit polyclonal apelin-antiserum revealed a population of magnocellular neurons in the PVH, SO and Acc expressing both irAP and neurophysin I-immunoreactivity (irNP), the latter being a marker of oxytocin-containing neurons. By inference, the AP-positive but irNP-negative magnocellular neurons could be vasopressin-containing. The presence of irAP in certain hypothalamic nuclei and pituitary suggests that the peptide may be a signaling molecule released from the hypothalamic-hypophysial axis.
|
16 |
Hypothalamic Melanocortin 4 Receptors Regulate Sexual Behavior in MiceSemple, Erin A. January 2017 (has links)
No description available.
|
17 |
FUNCTIONAL INTERPLAY BETWEEN SUBTHRESHOLD ION CHANNELS IN PREAUTONOMIC NEURONS OF THE HYPOTHALAMIC PARAVENTRICULAR NUCLEUS IN HEALTH AND DISEASE CONDITIONSSonner, Patrick M. 18 December 2007 (has links)
No description available.
|
18 |
Role of the Paraventricular Nucleus in TNB-Induced Anorexia / Role of the PVN in TBN AnorexiaMorrison, Michael 09 1900 (has links)
Inflammatory Bowel Disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract, often associated with reduced food intake (anorexia) and weight loss. The anorexia manifest following gastrointestinal inflammation can only be expressed if appropriate signals are communicated from the inflamed segment to the brain. Yet, the nature of these signals, and the identity of the brain sites processing these anorexigenic signals, are unknown. The present experiment evaluates the contribution of the paraventricular nucleus (PVN), a brain site rich in corticotropin releasing factor (CRF) receptors and known to be involved in the control of food intake, in the anorexia associated with experimental colitis. Colitis was induced, by trinitrobenzenesulfonic acid (TNB) treatment, in animals in which the PVN was ablated or in rats with sham brain surgeries. Results indicated clearly that the expression of the anorexia following TNB treatment is fully expressed even in the absence of the PVN. This result indicates that the integrity of the PVN is not necessary for the reduction of eating associated with intestinal inflammation, thus suggesting that CRF is also not critical to colitis-induced anorexia.
inflammatory bowel disease (IBD); feeding; anorexia; gut-brain communication; paraventricular nucleus (PVN); interleukin-1 (IL-l); corticotropin-releasing-factor (CRF); neuroimmunology / Thesis / Master of Science (MS)
|
19 |
Role of Angiotensin II, Glutamate, Nitric Oxide and an Aldosterone-ouabain Pathway in the PVN in Salt-induced Pressor Responses in RatsGabor, Alexander 13 June 2012 (has links)
High salt intake contributes to the development of hypertension in salt-sensitive humans and animals and the mechanistic causes are poorly understood. In Dahl salt-sensitive (S) but not salt-resistant (R) rats, high salt diet increases cerebrospinal fluid (CSF) [Na+] and activates an aldosterone-mineralocorticoid receptor-epithelial sodium channel-endogenous ouabain (MR-ENaC-EO) neuromodulatory pathway in the brain that enhances the activity of sympatho-excitatory angiotensinergic and glutamatergic pathways, leading to an increase in sympathetic nerve activity (SNA) and blood pressure (BP). We hypothesize that high salt diet in Dahl S rats enhances Ang II release in the paraventricular nucleus (PVN), causing a decrease in local nitric oxide (NO) action and an increase in local glutamate release thereby elevating SNA, BP and heart rate (HR). The present study evaluated the effects of agonists or blockers of MR, ENaC, EO, nitric oxide synthase (NOS) or glutamate and AT1-receptors on the BP and HR responses to acute infusions of Na+ rich aCSF, intracerebroventricularly (icv), or in the PVN of Dahl S, R or Wistar rats or to high salt diet in Dahl S and R rats. In Wistar rats, aldosterone in the PVN enhanced the BP and HR responses to infusion of Na+ rich aCSF in the PVN, but not in the CSF, and only the enhancement was prevented by blockers of MR, ENaC and EO in the PVN. AT1-receptor blockers in the PVN fully blocked the enhancement by aldosterone and the responses to infusion of Na+ rich aCSF icv, or in the PVN. Na+ rich aCSF in the PVN caused larger increases in BP and HR in Dahl S vs. R rats and the responses to Na+ were fully blocked by an AT1-receptor blocker in the PVN. BP and HR responses to a NOS blocker in the PVN were the same, but L-NAME enhanced Na+ effects more in Dahl R than S rats. High salt diet attenuated increases in BP from L-NAME in the PVN of Dahl S but not R rats. AT1 and glutamate receptor blockers candesartan and kynurenate in the PVN decreased BP in Dahl S but not R rats on high salt diet. At the peak BP response to candesartan, kynurenate in the PVN further decreased BP whereas candesartan did not further decrease BP at the peak BP response to kynurenate. Our findings indicate that both an acute increase in CSF [Na+] and high salt intake in Dahl S rats increases AT1-receptor activation and decreases NO action in the PVN thereby contributing to the pressor responses to Na+ and presumably, to dietary salt-induced hypertension. The increased BP response to AT1-receptor activation in the PVN of Dahl S is mediated by enhanced local glutamate receptor activation. An MR-ENaC-EO pathway in the PVN can be functionally active and further studies need to assess its role in Dahl S rats on high salt intake.
|
20 |
The role of the hypothalamic paraventricular nucleus in the cardiovascular responses to elevations in body temperature.Cham, Joo Lee, julie.cham@rmit.edu.au January 2008 (has links)
The hypothalamic paraventricular nucleus (PVN) is known to be a major integrative region within the forebrain. It is composed of functionally different subgroups of neurons, including the parvocellular neurons that project to important autonomic targets in the brainstem e.g. the rostral ventrolateral medulla (RVLM) and the intermediolateral cell column (IML) of the spinal cord, where the sympathetic preganglionic motor-neurons are located. These regions are critical in cardiovascular regulation; hence, these projections are likely to mediate the effects of the PVN on sympathetic nerve activity and hence may contribute to the cardiovascular changes induced by physiological stimuli such as elevations in body temperature. The neurotransmitter such as nitric oxide (NO) is important in cardiovascular regulation and it is now emerging as a major focus of investigation in thermoregulation. One of the most striking accumulations of NO containing-neurons is in the PVN where it appears to be playing an important role in cardiovascular regulation and body fluid homeostasis. The results of the work show; 1. That spinally-projecting and nitrergic neurons in the PVN may contribute to the central pathways activated by exposure to a hot environment. 2. Suggests that nitrergic neurons and spinally- projecting neurons in the brainstem may make a small contribution to the central pathways mediating the reflex responses initiated by hyperthermia. 3. The present study also illustrates that these PVN neurons projecting to the RVLM may make a smaller contribution than the spinal-projecting neurons in the PVN to the cardiovascular responses initiated by heat. 4. The results of my studies showed that the microinjection of muscimol to inhibit the neuronal activity in the PVN abolished the reflex decrease in renal blood flow following an elevation of core body temperature. In addition, this effect was specific to the PVN, since microinjections of muscimol into areas outside the PVN were not effective. These findings demonstrate that the PVN is critical for this reflex cardiovascular response initiated by hyperthermia. In conclusion, PVN is critical for the reflex decrease in renal blood flow during elevations in core body temperature. We hypothesise that projections from the PVN to the spinal cord and the RVLM contribute to the reflex cardiovascular responses. Additionally, nitrergic neurons in the PVN may contribute but the physiological role of those neurons in the reflex responses elicited by hyperthermia needs to be investigated.
|
Page generated in 0.0911 seconds