31 |
Impact de l'haploinsuffisance du gène Sim1 sur le développement et la fonction du noyau paraventriculaire de l'hypothalamusDuplan, Sabine Michaelle 08 1900 (has links)
L’obésité provient d’un déséquilibre de l’homéostasie énergétique, c’est-à-dire une augmentation des apports caloriques et/ou une diminution des dépenses énergétiques. Plusieurs données, autant anatomiques que physiologiques, démontrent que l’hypothalamus est un régulateur critique de l’appétit et des dépenses énergétiques. En particulier, le noyau paraventriculaire (noyau PV) de l’hypothalamus intègre plusieurs signaux provenant du système nerveux central (SNC) et/ou de la périphérie, afin de contrôler l’homéostasie énergétique via des projections axonales sur les neurones pré-ganglionnaires du système autonome situé dans le troc cérébral et la moelle épinière.
Plusieurs facteurs de transcription, impliqués dans le développement du noyau PV, ont été identifiés. Le facteur de transcription SIM1, qui est produit par virtuellement tous les neurones du noyau PV, est requis pour le développement du noyau PV. En effet, lors d’une étude antérieure, nous avons montré que le noyau PV ne se développe pas chez les souris homozygotes pour un allèle nul de Sim1. Ces souris meurent à la naissance, probablement à cause des anomalies du noyau PV. Par contre, les souris hétérozygotes survivent, mais développent une obésité précoce. De façon intéressante, le noyau PV des souris Sim1+/- est hypodéveloppé, contenant 24% moins de cellules. Ces données suggèrent fortement que ces anomalies du développement pourraient perturber le fonctionnement du noyau PV et contribuer au développement du phénotype d’obésité.
Dans ce contexte, nous avons entrepris des travaux expérimentaux ayant pour but d’étudier l’impact de l’haploinsuffisance de Sim1 sur : 1) le développement du noyau PV et de ses projections neuronales efférentes; 2) l’homéostasie énergétique; et 3) les voies neuronales physiologiques contrôlant l’homéostasie énergétique chez les souris Sim1+/-.
A cette fin, nous avons utilisé : 1) des injections stéréotaxiques combinées à des techniques d’immunohistochimie afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur le développement du noyau PV et de ses projections neuronales efférentes; 2) le paradigme des apports caloriques pairés, afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur l’homéostasie énergétique; et 3) une approche pharmacologique, c’est-à-dire l’administration intra- cérébroventriculaire (i.c.v.) et/ou intra-péritonéale (i.p.) de peptides anorexigènes, la mélanotane II (MTII), la leptine et la cholécystokinine (CCK), afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur les voies neuronales contrôlant l’homéostasie énergétique.
Dans un premier temps, nous avons constaté une diminution de 61% et de 65% de l’expression de l’ARN messager (ARNm) de l’ocytocine (Ot) et de l’arginine-vasopressine (Vp), respectivement, chez les embryons Sim1+/- de 18.5 jours (E18.5). De plus, le nombre de cellules produisant l’OT et la VP est apparu diminué de 84% et 41%, respectivement, chez les souris Sim1+/- adultes. L’analyse du marquage axonal rétrograde des efférences du noyau PV vers le tronc cérébral, en particulier ses projections sur le noyau tractus solitaire (NTS) aussi que le noyau dorsal moteur du nerf vague (X) (DMV), a permis de démontrer une diminution de 74% de ces efférences. Cependant, la composition moléculaire de ces projections neuronales reste inconnue. Nos résultats indiquent que l’haploinsuffisance de Sim1 : i) perturbe spécifiquement le développement des cellules produisant l’OT et la VP; et ii) abolit le développement d’une portion importante des projections du noyau PV sur le tronc cérébral, et notamment ses projections sur le NTS et le DMV. Ces observations soulèvent donc la possibilité que ces anomalies du développement du noyau PV contribuent au phénotype d’hyperphagie des souris Sim1+/-.
En second lieu, nous avons observé que la croissance pondérale des souris Sim1+/- et des souris Sim1+/+ n’était pas significativement différente lorsque la quantité de calories présentée aux souris Sim1+/- était la même que celle consommée par les souris Sim1+/+. De plus, l’analyse qualitative et quantitative des tissus adipeux blancs et des tissus adipeux bruns n’a démontré aucune différence significative en ce qui a trait à la taille et à la masse de ces tissus chez les deux groupes. Finalement, au terme de ces expériences, les souris Sim1+/--pairées n’étaient pas différentes des souris Sim1+/+ en ce qui a trait à leur insulinémie et leur contenu en triglycérides du foie et des masses adipeuses, alors que tous ces paramètres étaient augmentés chez les souris Sim1+/- nourries ad libitum. Ces résultats laissent croire que l’hyperphagie, et non une diminution des dépenses énergétiques, est la cause principale de l’obésité des souris Sim1+/-. Par conséquent, ces résultats suggèrent que : i) l’haploinsuffisance de Sim1 est associée à une augmentation de l’apport calorique sans toutefois moduler les dépenses énergétiques; ii) l’existence d’au moins deux voies neuronales issues du noyau PV : l’une qui régule la prise alimentaire et l’autre la thermogénèse; et iii) l’haploinsuffisance de Sim1 affecte spécifiquement la voie neuronale qui régule la prise alimentaire.
En dernier lieu, nous avons montré que l’injection de MTII, de leptine ainsi que de CCK induit une diminution significative de la consommation calorique des souris des deux génotypes, Sim1+/+ et Sim1+/-. De fait, la consommation calorique cumulative des souris Sim1+/- et Sim1+/+ est diminuée de 37% et de 51%, respectivement, durant les 4 heures suivant l’administration i.p. de MTII comparativement à l’administration d’une solution saline. Lors de l’administration i.c.v. de la leptine, la consommation calorique cumulative des souris Sim1+/- et Sim1+/+ est diminuée de 47% et de 32%, respectivement. Finalement, l’injection i.p. de CCK diminue la consommation calorique des souris Sim1+/- et Sim1+/+ de 52% et de 36%, respectivement. L’ensemble des résultats suggère ici que l’haploinsuffisance de Sim1 diminue l’activité de certaines voies neuronales régulant l’homéostasie énergétique, et particulièrement de celles qui contrôlent la prise alimentaire.
En résumé, ces travaux ont montré que l’haploinsuffisance de Sim1 affecte plusieurs processus du développement au sein du noyau PV. Ces anomalies du développement peuvent conduire à des dysfonctions de certains processus physiologiques distincts régulés par le noyau PV, et notamment de la prise alimentaire, et contribuer ainsi au phénotype d’obésité.
Les souris hétérozygotes pour le gène Sim1 représentent donc un modèle animal unique, où l’hyperphagie, et non les dépenses énergétiques, est la principale cause de l’obésité. En conséquence, ces souris pourraient représenter un modèle expérimental intéressant pour l’étude des mécanismes cellulaires et moléculaires en contrôle de la prise alimentaire. / Obesity arises from imbalance of the energy homeostasis processes. Multiple anatomical and physiological evidence demonstrate the involvement of the hypothalamus in the regulation of energy homeostasis, i.e. appetite and energy expenditure. In particular, the paraventricular nucleus (PVN) of the hypothalamus plays a critical role in these important homeostatic processes. The PVN integrates multiple signals that come from the central nervous system and/or the periphery to control energy homeostasis. It regulates these processes through projections to the dorsal vagal complex (DVC), which includes the dorsal motor nucleus of the vagus (X) (DMV) and the adjacent nucleus of the solitary tract (NST), located in the brainstem.
A cascade of transcription factors involved in the specification of the PVN neurons has been described. One component of this cascade, the bHLH-PAS transcription factor SIM1, is required for the development of all neurons of the PVN. Mice homozygous for null alleles of Sim1 die shortly after birth, presumably because of the lack of PVN. In contrast, Sim1 heterozygous mice survive but show early-onset obesity. Interestingly, the number of PVN cells is reduced by 24% in Sim1+/- mice, suggesting that developmental defects may cause PVN dysfunction and, thus, contribute to the obesity phenotype.
In order to explore this hypothesis, we studied the impact of Sim1 haploinsufficiency on: 1) the development of the PVN and it efferent axonal projections; 2) energy homeostasis; and 3) neuronal pathways regulating energy homeostasis.
We used: 1) stereotaxic injections and immunological techniques to determine the impact of Sim1 haploinsufficiency on PVN, and it efferent axonal projections, development; 2) the pair-feeding paradigm to determine the impact of Sim1 haploinsufficiency on energy homeostasis; and 3) intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) injections of pharmacological agents, melanotan II (MTII), leptin and cholecystokinin (CCK), to determine the impact of Sim1 haploinsufficiency on the neuronal pathways regulating energy homeostasis.
First, we noted that the expression of oxytocin (Ot) and argenin-vasopressin (Vp) mRNA is reduced by 61% and 65%, respectively, in the PVN of Sim1+/- E18.5 embryos. Furthermore, the number of OT- and VP-producing cells was found to be decreased by 84% and 41%, respectively, in Sim1+/- adult mice. Analysis of the retrograde axonal labelling of PVN neurons after stereotaxic injection of latex beads into the DVC of Sim1+/+ and Sim1+/- mice, showed a 74% reduction of PVN neurons projecting to the DVC. However, the molecular composition of the cells affected by a decrease of Sim1 remains unknown. These results indicate that Sim1 haploinsufficiency: i) specifically interferes with the development of OT- and VP-producing cells; and ii) abolishes the development of a subset of parvocellular neurons that project to the DVC. These observations therefore raise the possibility that developmental defects contribute to the obesity phenotype of Sim1+/- mice.
Second, we observed that pair-fed Sim1+/- mice do not gain more weight than littermate controls from 4 to 16 weeks of age. Moreover, qualitative and quantitative analyses showed significant increases of lean and fat mass, with hyperplasia of white adipose tissue and hypertrophy of brown adipose tissue, in Sim1+/- mice, but not in pair-fed animals. Additionally, at 16 weeks of age, insulin levels as well as liver and adipose tissue triglyceride content were not significantly different between Sim1+/+ and Sim1+/- pair-fed, but were significantly increased in Sim1+/- fed ad libitum. These results suggest that hyperphagia is the main if not the sole contributor to the obesity of Sim1+/- mice. They indicate that: i) Sim1 haploinsufficiency affects mainly food intake with no effect on energy expenditure; ii) food intake and energy expenditure are regulated by divergent pathways within the PVN; and iii) Sim1 haploinsufficiency specifically affects the feeding pathway without interfering with the thermogenesis pathway.
Third, we found that, in both mice genotype, injection of MTII, leptin or CCK induces a significant decrease in cumulative food intake. In fact, MTII i.p. injection decreases cumulative food intake of Sim1+/- and Sim1+/+ mice by 37% and 51% respectively, when compared to saline injection. Leptin i.c.v. injection reduces cumulative food intake by 47% and 32% in Sim1+/- and Sim1+/+ mice, respectively. Finally, CCK i.p. injection decreases food intake of Sim1+/- and Sim1+/+ mice by 52% and 36%, respectively. All in all, the results of these latter studies suggest that Sim1 haploinsufficiency diminishes the activity of neuronal pathways regulating energy homeostasis, in particular of pathways controlling food intake.
In conclusion, our work has shown that Sim1 haploinsufficiency affects several developmental processes of the PVN. These developmental defects may cause the dysfunction of physiological processes regulated by the PVN, including the control of food intake, and thus contribute to the hyperphagic obesity phenotype.
Sim1 heterozygous mice represent an interesting animal model of obesity in which hyperphagia is the main, if not the sole mechanism of their obesity. These mice could therefore represent a unique opportunity to investigate cellular and molecular mechanisms in control of food intake.
|
32 |
Central Nervous System Regulation of Fat Cell Lipid Mobilization: The Role of the Sympathetic Nervous SystemFoster, Michelle Tranace 12 January 2006 (has links)
Obesity is a growing disorder in the United States, affecting over 60% of the population. We previously defined sympathetic nervous system (SNS) outflow from brain to white adipose tissue (WAT) using a viral transneuronal tract tracer. SNS innervation of WAT is the principle initiator of lipolysis, whereas decreases in sympathetic drive promote lipid accumulation. Which of the many origins of SNS outflow from brain to WAT results in SNS-mediated changes in lipid mobilization (increases in drive) or accumulation (decrease in drive) is unknown. Previous research indicates that sympathetic denervation blocks lipid mobilization; thus, rostral sites in the neuroaxis connected to WAT via the SNS may promote WAT lipid mobilization. The hypothalamic paraventricular nucleus (PVN) may play a role via its descending projections to the intermediolateral horn of the spinal cord. Therefore, the consequences of PVN lesions (PVNx) on WAT mobilization or accumulation were tested. PVNx resulted in increased lipid accumulation, indicated by increases in retroperitoneal (RWAT) , epididymal (EWAT) , and inguinal WAT (IWAT) pad masses, in fed hamsters, but PVNx did not block fasting (56 h)-induced lipid mobilization. Because adrenal medullary catecholamines, especially epinephrine, also play a minor role in lipid mobilization, we tested the contribution of catecholamine release on lipid mobilization through adrenal demedullation (ADMEDx), with and without PVNx, and found fastinginduced lipid mobilization was not blocked. There was, however, a suggestion that distal denervation of IWAT, with and without ADMEDx, partially blocked lipid mobilization. In addition, evidence suggests SNS also may be an important controller of fat cell proliferation. Surgical denervation of WAT triggers increases in fat cell number (FCN), but have not determined if this FCN increase is due to preadipocyte proliferation or differentiation of preadipocytes into mature fat cells. We also have not demonstrated what role sensory innervation may have in regulating white adipocyte proliferation. Therefore, the role of WAT sympathetic or sensory innervation on adipocyte proliferation was tested. The SNS but not sensory denervation triggered bona fide proliferation as indicated by bromodeoxyuridine plus AD3, a specific adipocyte membrane protein, colabeling. These and previous data suggest that the SNS plays a role in regulating adiposity.
|
33 |
Impact de l'haploinsuffisance du gène Sim1 sur le développement et la fonction du noyau paraventriculaire de l'hypothalamusDuplan, Sabine Michaelle 08 1900 (has links)
L’obésité provient d’un déséquilibre de l’homéostasie énergétique, c’est-à-dire une augmentation des apports caloriques et/ou une diminution des dépenses énergétiques. Plusieurs données, autant anatomiques que physiologiques, démontrent que l’hypothalamus est un régulateur critique de l’appétit et des dépenses énergétiques. En particulier, le noyau paraventriculaire (noyau PV) de l’hypothalamus intègre plusieurs signaux provenant du système nerveux central (SNC) et/ou de la périphérie, afin de contrôler l’homéostasie énergétique via des projections axonales sur les neurones pré-ganglionnaires du système autonome situé dans le troc cérébral et la moelle épinière.
Plusieurs facteurs de transcription, impliqués dans le développement du noyau PV, ont été identifiés. Le facteur de transcription SIM1, qui est produit par virtuellement tous les neurones du noyau PV, est requis pour le développement du noyau PV. En effet, lors d’une étude antérieure, nous avons montré que le noyau PV ne se développe pas chez les souris homozygotes pour un allèle nul de Sim1. Ces souris meurent à la naissance, probablement à cause des anomalies du noyau PV. Par contre, les souris hétérozygotes survivent, mais développent une obésité précoce. De façon intéressante, le noyau PV des souris Sim1+/- est hypodéveloppé, contenant 24% moins de cellules. Ces données suggèrent fortement que ces anomalies du développement pourraient perturber le fonctionnement du noyau PV et contribuer au développement du phénotype d’obésité.
Dans ce contexte, nous avons entrepris des travaux expérimentaux ayant pour but d’étudier l’impact de l’haploinsuffisance de Sim1 sur : 1) le développement du noyau PV et de ses projections neuronales efférentes; 2) l’homéostasie énergétique; et 3) les voies neuronales physiologiques contrôlant l’homéostasie énergétique chez les souris Sim1+/-.
A cette fin, nous avons utilisé : 1) des injections stéréotaxiques combinées à des techniques d’immunohistochimie afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur le développement du noyau PV et de ses projections neuronales efférentes; 2) le paradigme des apports caloriques pairés, afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur l’homéostasie énergétique; et 3) une approche pharmacologique, c’est-à-dire l’administration intra- cérébroventriculaire (i.c.v.) et/ou intra-péritonéale (i.p.) de peptides anorexigènes, la mélanotane II (MTII), la leptine et la cholécystokinine (CCK), afin de déterminer l’impact de l’haploinsuffisance de Sim1 sur les voies neuronales contrôlant l’homéostasie énergétique.
Dans un premier temps, nous avons constaté une diminution de 61% et de 65% de l’expression de l’ARN messager (ARNm) de l’ocytocine (Ot) et de l’arginine-vasopressine (Vp), respectivement, chez les embryons Sim1+/- de 18.5 jours (E18.5). De plus, le nombre de cellules produisant l’OT et la VP est apparu diminué de 84% et 41%, respectivement, chez les souris Sim1+/- adultes. L’analyse du marquage axonal rétrograde des efférences du noyau PV vers le tronc cérébral, en particulier ses projections sur le noyau tractus solitaire (NTS) aussi que le noyau dorsal moteur du nerf vague (X) (DMV), a permis de démontrer une diminution de 74% de ces efférences. Cependant, la composition moléculaire de ces projections neuronales reste inconnue. Nos résultats indiquent que l’haploinsuffisance de Sim1 : i) perturbe spécifiquement le développement des cellules produisant l’OT et la VP; et ii) abolit le développement d’une portion importante des projections du noyau PV sur le tronc cérébral, et notamment ses projections sur le NTS et le DMV. Ces observations soulèvent donc la possibilité que ces anomalies du développement du noyau PV contribuent au phénotype d’hyperphagie des souris Sim1+/-.
En second lieu, nous avons observé que la croissance pondérale des souris Sim1+/- et des souris Sim1+/+ n’était pas significativement différente lorsque la quantité de calories présentée aux souris Sim1+/- était la même que celle consommée par les souris Sim1+/+. De plus, l’analyse qualitative et quantitative des tissus adipeux blancs et des tissus adipeux bruns n’a démontré aucune différence significative en ce qui a trait à la taille et à la masse de ces tissus chez les deux groupes. Finalement, au terme de ces expériences, les souris Sim1+/--pairées n’étaient pas différentes des souris Sim1+/+ en ce qui a trait à leur insulinémie et leur contenu en triglycérides du foie et des masses adipeuses, alors que tous ces paramètres étaient augmentés chez les souris Sim1+/- nourries ad libitum. Ces résultats laissent croire que l’hyperphagie, et non une diminution des dépenses énergétiques, est la cause principale de l’obésité des souris Sim1+/-. Par conséquent, ces résultats suggèrent que : i) l’haploinsuffisance de Sim1 est associée à une augmentation de l’apport calorique sans toutefois moduler les dépenses énergétiques; ii) l’existence d’au moins deux voies neuronales issues du noyau PV : l’une qui régule la prise alimentaire et l’autre la thermogénèse; et iii) l’haploinsuffisance de Sim1 affecte spécifiquement la voie neuronale qui régule la prise alimentaire.
En dernier lieu, nous avons montré que l’injection de MTII, de leptine ainsi que de CCK induit une diminution significative de la consommation calorique des souris des deux génotypes, Sim1+/+ et Sim1+/-. De fait, la consommation calorique cumulative des souris Sim1+/- et Sim1+/+ est diminuée de 37% et de 51%, respectivement, durant les 4 heures suivant l’administration i.p. de MTII comparativement à l’administration d’une solution saline. Lors de l’administration i.c.v. de la leptine, la consommation calorique cumulative des souris Sim1+/- et Sim1+/+ est diminuée de 47% et de 32%, respectivement. Finalement, l’injection i.p. de CCK diminue la consommation calorique des souris Sim1+/- et Sim1+/+ de 52% et de 36%, respectivement. L’ensemble des résultats suggère ici que l’haploinsuffisance de Sim1 diminue l’activité de certaines voies neuronales régulant l’homéostasie énergétique, et particulièrement de celles qui contrôlent la prise alimentaire.
En résumé, ces travaux ont montré que l’haploinsuffisance de Sim1 affecte plusieurs processus du développement au sein du noyau PV. Ces anomalies du développement peuvent conduire à des dysfonctions de certains processus physiologiques distincts régulés par le noyau PV, et notamment de la prise alimentaire, et contribuer ainsi au phénotype d’obésité.
Les souris hétérozygotes pour le gène Sim1 représentent donc un modèle animal unique, où l’hyperphagie, et non les dépenses énergétiques, est la principale cause de l’obésité. En conséquence, ces souris pourraient représenter un modèle expérimental intéressant pour l’étude des mécanismes cellulaires et moléculaires en contrôle de la prise alimentaire. / Obesity arises from imbalance of the energy homeostasis processes. Multiple anatomical and physiological evidence demonstrate the involvement of the hypothalamus in the regulation of energy homeostasis, i.e. appetite and energy expenditure. In particular, the paraventricular nucleus (PVN) of the hypothalamus plays a critical role in these important homeostatic processes. The PVN integrates multiple signals that come from the central nervous system and/or the periphery to control energy homeostasis. It regulates these processes through projections to the dorsal vagal complex (DVC), which includes the dorsal motor nucleus of the vagus (X) (DMV) and the adjacent nucleus of the solitary tract (NST), located in the brainstem.
A cascade of transcription factors involved in the specification of the PVN neurons has been described. One component of this cascade, the bHLH-PAS transcription factor SIM1, is required for the development of all neurons of the PVN. Mice homozygous for null alleles of Sim1 die shortly after birth, presumably because of the lack of PVN. In contrast, Sim1 heterozygous mice survive but show early-onset obesity. Interestingly, the number of PVN cells is reduced by 24% in Sim1+/- mice, suggesting that developmental defects may cause PVN dysfunction and, thus, contribute to the obesity phenotype.
In order to explore this hypothesis, we studied the impact of Sim1 haploinsufficiency on: 1) the development of the PVN and it efferent axonal projections; 2) energy homeostasis; and 3) neuronal pathways regulating energy homeostasis.
We used: 1) stereotaxic injections and immunological techniques to determine the impact of Sim1 haploinsufficiency on PVN, and it efferent axonal projections, development; 2) the pair-feeding paradigm to determine the impact of Sim1 haploinsufficiency on energy homeostasis; and 3) intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) injections of pharmacological agents, melanotan II (MTII), leptin and cholecystokinin (CCK), to determine the impact of Sim1 haploinsufficiency on the neuronal pathways regulating energy homeostasis.
First, we noted that the expression of oxytocin (Ot) and argenin-vasopressin (Vp) mRNA is reduced by 61% and 65%, respectively, in the PVN of Sim1+/- E18.5 embryos. Furthermore, the number of OT- and VP-producing cells was found to be decreased by 84% and 41%, respectively, in Sim1+/- adult mice. Analysis of the retrograde axonal labelling of PVN neurons after stereotaxic injection of latex beads into the DVC of Sim1+/+ and Sim1+/- mice, showed a 74% reduction of PVN neurons projecting to the DVC. However, the molecular composition of the cells affected by a decrease of Sim1 remains unknown. These results indicate that Sim1 haploinsufficiency: i) specifically interferes with the development of OT- and VP-producing cells; and ii) abolishes the development of a subset of parvocellular neurons that project to the DVC. These observations therefore raise the possibility that developmental defects contribute to the obesity phenotype of Sim1+/- mice.
Second, we observed that pair-fed Sim1+/- mice do not gain more weight than littermate controls from 4 to 16 weeks of age. Moreover, qualitative and quantitative analyses showed significant increases of lean and fat mass, with hyperplasia of white adipose tissue and hypertrophy of brown adipose tissue, in Sim1+/- mice, but not in pair-fed animals. Additionally, at 16 weeks of age, insulin levels as well as liver and adipose tissue triglyceride content were not significantly different between Sim1+/+ and Sim1+/- pair-fed, but were significantly increased in Sim1+/- fed ad libitum. These results suggest that hyperphagia is the main if not the sole contributor to the obesity of Sim1+/- mice. They indicate that: i) Sim1 haploinsufficiency affects mainly food intake with no effect on energy expenditure; ii) food intake and energy expenditure are regulated by divergent pathways within the PVN; and iii) Sim1 haploinsufficiency specifically affects the feeding pathway without interfering with the thermogenesis pathway.
Third, we found that, in both mice genotype, injection of MTII, leptin or CCK induces a significant decrease in cumulative food intake. In fact, MTII i.p. injection decreases cumulative food intake of Sim1+/- and Sim1+/+ mice by 37% and 51% respectively, when compared to saline injection. Leptin i.c.v. injection reduces cumulative food intake by 47% and 32% in Sim1+/- and Sim1+/+ mice, respectively. Finally, CCK i.p. injection decreases food intake of Sim1+/- and Sim1+/+ mice by 52% and 36%, respectively. All in all, the results of these latter studies suggest that Sim1 haploinsufficiency diminishes the activity of neuronal pathways regulating energy homeostasis, in particular of pathways controlling food intake.
In conclusion, our work has shown that Sim1 haploinsufficiency affects several developmental processes of the PVN. These developmental defects may cause the dysfunction of physiological processes regulated by the PVN, including the control of food intake, and thus contribute to the hyperphagic obesity phenotype.
Sim1 heterozygous mice represent an interesting animal model of obesity in which hyperphagia is the main, if not the sole mechanism of their obesity. These mice could therefore represent a unique opportunity to investigate cellular and molecular mechanisms in control of food intake.
|
34 |
Role of the hypothalamus in sociality : possible contribution to autism spectrum disorders / Rôle de l'hypotalamus dans la sociabilité : une contribution possible à la compréhension des troubles du spectre autistiqueWolfe, Farah 12 December 2016 (has links)
La sociabilité de l’homme est un phénomène complexe. Les théories dominantes essayant d'expliquer les mécanismes neurobiologiques de cette sociabilité ont largement impliqué l'ocytocine (OXT), un neuropeptide qui facilite de nombreuses fonctions et comportements sociaux. L'hypothalamus, parmi ses nombreuses fonctions, synthétise et sécrète l’OXT via son noyau supraoptique (SON) et le noyau paraventriculaire (PVN), faisant de lui un candidat intéressant pour comprendre les bases neurales de cette sociabilité. Dans cette thèse, qui combine trois études en imagerie par résonance magnétique (IRM), nous avons examiné 1) les différences anatomiques au sein de l'hypothalamus entre des participants contrôles et des patients autistes; 2) l’activité de l'hypothalamus, et plus spécifiquement des sous-régions hypothalamiques incluant le SON et le PVN, en réponse à des visages portant différents niveaux de sociabilité; 3) les connections fonctionnelles que ces sous-régions hypothalamiques entretiennent avec d'autres réseaux cérébraux. Nos résultats révèlent une spécificité, tant dans leur activité fonctionnelle que dans leurs connections anatomiques, des deux sous-régions hypothalamiques (SON et PVN) en fonction du niveaux de sociabilité. Ce travail de thèse fournit donc non seulement de nouvelles méthodes pour explorer les petites sous-régions hypothalamiques mais confirme également le rôle de l’hypothalamus dans la sociabilité et ses anomalies, apportant ainsi un nouvel éclairage sur l’origine des dysfonctionnements sociaux dans l’autisme et d'autres pathologies. / Human sociality is a complex phenomenon. Prevailing theories attempting to explain the neurobiological mechanisms of human sociality have implicated neuropeptide oxytocin (OXT), which facilitates numerous social functions and behaviors. The hypothalamus, among its many functions, also synthesizes and secretes OXT via its supraoptic nucleus (SON) and the paraventricular nucleus (PVN), making them viable candidates to understand the underpinnings of various social processes. This thesis combines three magnetic resonance imaging (MRI) studies investigating 1) anatomical difference of the hypothalamus between neurotypics and patients with Autism Spectrum Disorders (ASD); 2) functional MRI of the hypothalamus, specifically in hypothalamic subregions containing SON and PVN in response to faces of individuals with varying social significance; 3) functional connectivity of these hypothalamic subregions to other brain networks. Results revealed differential activity of hypothalamic subregions in response to various faces and distinctive patterns of connectivity to other brain areas that are involved in social cognition, as well as anatomical abnormalities of the hypothalamus in ASD. Altogether, the work in this thesis provides novel methods of measuring small hypothalamic subregions and supporting evidence of hypothalamic involvement in social functions that may also shed some light on social dysfunctions in ASD and other pathologies.
|
35 |
Role of the Dorsomedial Hypothalamus in Responses Evoked from the Preoptic Area and by Systemic Administration of Interleukin-1βHunt, Joseph L. 23 June 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Recent studies in anesthetized rats suggest that autonomic effects relating to thermoregulation that are evoked from the preoptic area (POA) may be mediated through activation of neurons in the dorsomedial hypothalamus (DMH). Disinhibition of neurons in the DMH produces not only cardiovascular changes but also increases in plasma adrenocorticotropic hormone (ACTH) and locomotor activity mimicking those evoked by microinjection of muscimol, a GABAA receptor agonist and neuronal inhibitor, into the POA. Therefore, I tested the hypothesis that all of these effects evoked from the POA are mediated through neurons in the DMH by assessing the effect of bilateral microinjection of muscimol into the DMH on the changes evoked by microinjection of muscimol into the POA in conscious rats. In addition, I tested the hypothesis that neurons in the DMH mediate a specific response that is thought to signal through the POA, the activation of the HPA axis evoked by systemic administration of the inflammatory cytokine IL-1β. After injection of vehicle into the DMH, injection of muscimol into the POA elicited marked increases in heart rate, arterial pressure, body temperature, plasma ACTH and locomotor activity and also increased Fos expression in the hypothalamic paraventricular nucleus (PVN), a region known to control the release of ACTH from the adenohypophysis, and the raphe pallidus, a medullary region known to mediate POA-evoked sympathetic responses. Prior microinjection of muscimol into the DMH produced a modest depression of baseline heart rate, arterial pressure, and body temperature but completely abolished all changes evoked from the POA. Microinjection of muscimol just anterior to the DMH had no effect on POA-evoked autonomic and neuroendocrine changes. Inhibition of neuronal activity in the DMH only partially attenuated the increased activity of the HPA axis following systemic injections of IL-1β. Thus, neurons in the DMH mediate a diverse array of physiological and behavioral responses elicited from the POA, suggesting that the POA represents an important source of inhibitory tone to key neurons in the DMH. However, it is clear that the inflammatory cytokine IL-1β must employ other pathways that are DMH-, and possibly POA-, independent to activate the HPA axis.
|
36 |
GluR5 IS INVOLVED IN REGULATION OF THE HPA AXISVAN HOOREN, DANIELLA CHRISTINE 02 July 2004 (has links)
No description available.
|
37 |
Efeitos da terapia hormonal na resposta ao estresse em modelo animal de perimenopausa / Effects of hormonal therapy on stress response in na animal modelo of perimenopauseSantos, Isabelle Rodrigues dos 05 June 2018 (has links)
A perimenopausa é caracterizada como o período de transição da vida reprodutiva para a não reprodutiva em mulheres, e inicia-se com o aparecimento dos sintomas clínicos, prolongandose até um ano após a última menstruação. Esta fase é caracterizada pela ocorrência de ciclos menstruais irregulares, alterações na produção hormonal, bem como por mudanças comportamentais, neuroendócrinas e metabólicas, sendo o período de maior vulnerabilidade a desordens afetivas quando comparado às outras fases da vida. Apesar dos diversos estudos desenvolvidos acerca das manifestações destes sintomas durante a perimenopausa, ainda pouco se sabe a respeito das modificações na atividade do eixo hipotálamo-hipófise-adrenal (HPA) e da resposta ao estresse. O reagente químico diepóxido de 4-vinilciclohexeno (VCD) acelera o processo natural de atresia folicular, possibilitando estudos desta fase da vida reprodutiva. Assim sendo, sua aplicação em roedores constitui um excelente modelo experimental capaz de simular em animais o que ocorre durante a perimenopausa. Assim, os objetivos deste trabalho foram avaliar, neste modelo animal de perimenopausa: 1) as respostas endócrinas (corticosterona e progesterona) e neuroniais (atividade das subdivisões parvocelulares medial e posterior - PaMP e PaPo do núcleo paraventricular do hipotálamo (PVN) e do locus coeruleus - LC) ao estresse de contenção e 2) a influência da terapia hormonal sobre estas respostas. Para tanto, ratas Wistar receberam injeções subcutâneas de Óleo ou VCD por 15 dias consecutivos, a partir do 28° dia de vida. Ao redor do 56º ao 66º dia do início da administração de Óleo ou VCD, as ratas dos grupos a serem estressados receberam implantes subcutâneos de um pellet contendo placebo (PL), estradiol (E2), progesterona (P4) ou estradiol+progesterona (E2P4). O estresse de contenção foi aplicado por 30 minutos entre 09:00h e 10:00h na fase do diestro, ou 20 dias após o início da terapia hormonal (grupos VCD+E2, VCD+P4 e VCD+E2P4), de 75 a 85 dias após o início da administração de VCD/Óleo. O sangue foi coletado imediatamente (0min) e 60min após o final do estresse, quando os animais foram anestesiados e perfundidos para obtenção do tecido cerebral e posterior estudo imunohistoquímico das áreas de interesse. As concentrações basais de corticosterona foram semelhantes entre os grupos Óleo e VCD não estressadas. Contudo, asecreção de corticosterona em resposta ao estresse das ratas em periestropausa foi 72% menor que a do grupo controle. As concentrações basais de progesterona das ratas em periestropausa foram menores do que aquelas das ratas controles, mas o aumento da secreção deste hormônio induzido pelo estresse agudo por contenção não foi diferente entre os grupos. Centralmente, nas subdivisões PaMP e PaPo do PVN, assim como no LC, o número de neurônios c-Fos positivos expressos não foi diferente entre ratas VCD e óleo e o estresse aumentou de maneira semelhante o número de neurônios ativados em ambos os grupos. A secreção de corticosterona de animais em periestropausa tratados com estradiol, associado ou não à progesterona, foi ainda mais atenuada. Por outro lado, nas ratas tratadas com progesterona, as concentrações de corticosterona após o estresse mostraram-se mais elevadas que as do grupo VCD estressado sem tratamento hormonal. Todos os grupos tratados com hormônios aumentaram a secreção de progesterona em resposta ao estresse, no entanto esta resposta foi amplificada pelo estradiol. Nenhum dos tratamentos hormonais modificou a atividade neuronial após o estresse na PaMP, embora todos tenham atenuado esta resposta na PaPo. No LC, todos os tratamentos bloquearam o aumento de atividade neuronial induzida pelo estresse. Uma hora após o final do estresse, as concentrações de corticosterona e progesterona retornaram aos níveis basais observados nas ratas não estressadas. No entanto, nos grupos tratados com estradiol, os níveis de progesterona não retornaram aos basais, sendo estes níveis significantemente maiores após o fim do estímulo. Em conjunto, nossos resultados demonstram que na periestropausa, embora a secreção de progesterona em resposta ao estresse esteja preservada, a capacidade da adrenal em secretar corticosterona está reduzida. Esta redução parece não estar associada à deficiência central no funcionamento do eixo HPA (PVN) ou do sistema simpático central (LC), mas sim, a disfunções na esteroidogênese adrenal, que foram parcialmente corrigidas pela progesterona exógena. A diminuição da atividade neuronial do LC pelos esteróides ovarianos sugere uma possível atenuação do tônus simpático por estes hormônios. Ainda, a capacidade de recuperação pós-estresse da secreção de corticosterona e de progesterona se mostrou preservada neste modelo experimental. / Perimenopause is characterized as the period of transition from reproductive to nonreproductive life in women, and begins with the onset of clinical symptoms, lasting up to one year after the last menstrual period. This phase is characterized by irregular menstrual cycles, alterations in hormonal production, as well as by behavioral, neuroendocrine and metabolic changes, and increased vulnerability to affective disorders when compared to other phases of life. Despite the various studies on the manifestations of these symptoms during perimenopause, little is known about the changes in hypothalamic-pituitary-adrenal (HPA) axis activity and the response to stress. The chemical reagent diepoxide 4-vinylcyclohexene (VCD) accelerates the natural process of follicular atresia, enabling studies of this phase of reproductive life. Therefore, its application in rodents constitutes an excellent experimental model capable of simulating in animals what occurs during perimenopause. Thus, the objective of this study was to evaluate, in an animal model of perimenopause: 1) the endocrine responses (corticosterone and progesterone) as well as the neuronal response (parvocellular subdivisions of PVN, medial- PaMP) and posterior-PaPO and locus coeruleus - LC) to restraint stress and 2) the influence of hormonal therapy on these responses. Female Wistar rats received subcutaneous injections of Oil or VCD for 15 consecutive days, from the 28th day of life. Around the 56th to 66th day of the onset of Oil or VCD administration, the rats of the groups to be stressed received subcutaneous implants of a pellet containing placebo (PL), estradiol (E2), progesterone (P4) or estradiol + progesterone (E2P4 ). Restraint stress was applied for 30 minutes between 09:00 and 10:00 in the diestrus phase, or 20 days after the onset of hormonal therapy (VCD + E2, VCD + P4 and VCD + E2P4 groups), from 75 to 85 days after starting VCD / Oil administration. The blood was collected immediately (0min) and 60min after the end of stress, when the animals were anesthetized and perfused to take the brain for immunohistochemistry of PVN and LC. Basal corticosterone concentrations were similar between the non-stressed Oil and VCD groups. However, corticosterone secretion in response to stress was 72% lower than that of the control group. The basal progesterone concentrations of periestropausal rats were lower than those of the control rats, but the increase in the secretion of this hormone induced by stress was not different between thegroups. Centrally, in the PaMP and PaPO subdivisions of PVN as well as LC, the number of c-Fos positive neurons expressed was not different between VCD and Oil rats and the stress increased similarly the number of activated neurons in both groups. Corticosterone secretion from estradiol-treated periestropause rats, associated or not with progesterone, was further attenuated. On the other hand, in rats treated with progesterone, post-stress corticosterone concentrations were higher than those in the stressed VCD group without hormonal treatment. All groups treated with hormones increased progesterone secretion in response to stress, however this response was amplified by estradiol. None of the hormone treatments modified neuronal activity after stress in PaMP, although all hormone treatment attenuated this response in PaPo. In the LC, all treatments blocked the increase of neuronal activity induced by stress. One hour after the end of stress, corticosterone and progesterone concentrations returned to the baseline levels observed in the non-stressed rats. However, in the estradioltreated groups, progesterone levels did not return to the basal levels, these levels being significantly higher after the end of the stimulus. Taken together, our results demonstrate that in periestropause, although progesterone secretion in response to stress is preserved, the ability of the adrenal to secrete corticosterone is reduced. This reduction appears not to be associated with a central deficiency in HPA axis (PVN) or central sympathetic (LC) function, but rather to dysfunctions in adrenal steroidogenesis, which have been partially corrected by exogenous progesterone. The reduction of neuronal LC activity by ovarian steroids suggests a possible attenuation of sympathetic tone by these hormones. Furthermore, the post-stress recovery capacity of corticosterone and progesterone secretion seems to be preserved in this experimental model.
|
38 |
Estudo da interação entre ATP e glutamato em neurônios do núcleo paraventricular do hipotálamo e sua relação com a resposta simpatoexcitatória induzida por alterações na osmolaridade. / Study of the interaction between ATP and glutamate in neurons of the paraventricular nucleus of the hypothalamus and its relationship with the sympathoexcitatory response induced by changes in osmolarity.Ferreira Neto, Hildebrando Candido 28 November 2014 (has links)
Neste trabalho investigamos a interação entre ATP-glutamato na modulação de potenciais de ação e atividade sináptica de neurônios PVN-RVLM, além de avaliar se esta interação induziria mudanças na atividade simpática lombar (ANSL) por estímulo osmótico. Utilizamos de técnicas de imunohistoquímica, whole-cell patch clamp e registro eletroneurográfico. Observou-se que o ATP aumenta a frequência de potenciais de ação em neurônios PVN-RVLM, efeito bloqueado por acido quinurênico (KYN) e PPADS. A injeção de ATP no PVN aumenta a ANSL (25 nmol: 72%), um efeito atenuado por PPADS e/ou KYN, e também por CNQX. O ATP não afeta a função sináptica, mas aumenta correntes glutamatérgicas induzidas por aplicação AMPA em 52%, a qual foi bloqueada por PPADS ou por quelação de Ca2+ intracelular. Além disso, o estímulo osmótico ativa neurônios do PVN que expressam receptores P2X2 e potencia as correntes mediadas por AMPA (53%), um efeito bloqueado por PPADS. Finalmente, demonstrou-se que receptores P2 no PVN são importantes na simpatoexcitação induzida por estímulo osmótico agudo. / In the present study we investigate the interaction of ATP-glutamate on the firing activity and synaptic function in PVN-RVLM neurons, besides whether that interaction would be translated in changes on sympathetic nerve activity (SNA) induced by osmotic stimulus. Immunohistochemistry, whole-cell patch clamp and electroneurography technical approaches were used. Our data have shown that ATP increases firing rate of PVN-RVLM neurons, an effect blocked by kynurenic acid (KYN) or PPADS. ATP injection into the PVN enhanced SNA (72%), which was attenuated by PPADS and/or KYN, or CNQX. ATP did not affect synaptic function but, glutamatergic currents evoked by AMPA application were augmented with ATP (AMPA area: 52%), blocked by PPADS and chelation of intracellular Ca2+. In addition, we observed that acute osmotic stimulus activates P2X2 expressing neurons in the PVN. Moreover, an osmotic challenge potentiated AMPA responses (53%), an effect blocked by PPADS. Finally, we demonstrated that P2 receptors in the PVN are important for osmotically-driven sympathoexcitation.
|
39 |
Expressão do fator de transcrição nuclear kB (NF-kB) em neurônios ocitocinérgicos de ratos submetidos à sobrecarga salina : influência da dexametasona / Expression of nuclear transcription factor kB (NF-kB) in rat ocxytocinergic neurons submitted to salt loading : the influence of dexamethasoneSantos, Patricia Rabelo dos 27 January 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The hypothalamic-neurohypophysial system is the main system through which the brain maintains homeostasis of bodily fluids. Specifically, the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei are directly involved with hydroelectrolytic equilibrium and are specialized in the synthesis and secretion of vasopressin and oxytocin (OT). Changes in the milieu intérieur are conceived as stressors by the central nervous system (CNS) and are modulated by the hypothalamic-pituitary-adrenal axis (HPA). Nuclear transcription factor kappa B (NF-κB) mediates immunosuppressant and anti-inflammatory of glucocorticoids. Thus, the aim of this study was to verify the expression profile of component p65 of the NF-κB classical pathway in SON and PVN oxytocinergic neurons in response to dehydration, glucocorticoid treatment, and in normal conditions. Methods: Wistar rats (250-300g) were maintained in controlled environment with temperature (23 ± 2ºC), light/dark cycle of 12 hours and water and food specific for rodents ad labitum until the beginning of experimental period. All procedures were approved by Ethical Comitee of Research with Animals from UFS (Protocol # 60/2012). Animals were grouped into Control (water ad libitum for 4 days, n = 6-7); Control + Dexa (water ad libitum and treated with dexamethasone, n = 6-7); SL4 (salt overloading ad libitum, 1.8% NaCl for 4 days, n = 6-7); SL4 + Dexa (salt overloading ad libitum, 1.8% NaCl for 4 days and dexamethasone, n = 6-7). Dexamethasone (10 mg/kg i.p.) was administered 12 and 2 hours before perfusion and removal of brains for OT/p65 immunofluorescence, or before sacrifice for blood sampling and angiotensin II (ANGII) dosage. We applied two-way ANOVA and Bonferroni posthoc test to analyze behavioral and hormonal dosage data. Results obtained from imunohistochemestry for evaluation of oxytocin and/or p65 neuronal activity, were subjected to qualitative evaluation. We verified SL4 animals ingested more fluid than control, on second (p<0.01), third (p<0.01) and forth (p<0.001) experimental day. SL4 also increased plasmatic concentration of ANGII (p<0.01). Qualitative analysis of double labeling OT/p65 on PVN and SON revealed a weak immunoreactivity for oxytocin on SL4 and SL4 + Dexa groups, when compared to control and Control + Dexa groups. Was observed expression of p65 subunit of NF-κB in all hypothalamic studied areas, with predominant cytoplasmic imunoreactivity in all groups. These data demonstrate that p65 subunit of NF-κB are present in oxytocinergic neurons from the most important hypothalamic areas that integrates the stress axis (HPA) and hidroelectrolyte balance (SHNH). More studies are necessary to clarify the real participation of NF-κB intracellular pathway evoked by intracellular dehydration on endocrines and behavioral hidroelectrolyte adjustments. / O sistema hipotálamo neuro-hipofisário (SHNH) é o principal sistema pelo qual o cérebro mantém a homeostase dos líquidos corporais. Especificamente, os núcleos supra-óptico (SON) e paraventricular (PVN) do hipotálamo estão diretamente envolvidos com o controle do balanço hidroeletrolítico e são especializados na síntese e secreção de vasopressina (AVP) e ocitocina (OT). Alterações no milieu intérieur são vistas como estressoras pelo sistema nervoso central (SNC) e moduladas pelo eixo hipotálamo-hipófise-adrenal (HHA). O fator de transcrição nuclear kappa B (NF-κB) é conhecido por mediar os efeitos imunossupressores e anti-inflamatórios dos glicocorticoides. Sendo assim, o objetivo do presente estudo foi verificar o perfil de expressão do componente p65 da via clássica do NF-κB em neurônios ocitocinérgicos do PVN e SON, em resposta à desidratação crônica, associada, ou não, ao tratamento com glicocorticoides. Métodos: Ratos wistar (250-300 g) foram mantidos em ambiente com temperatura (23 ± 2ºC) e luminosidade, ciclo claro-escuro de 12 horas (luz das 6 às 18 horas), controladas, com água e ração específica para roedores (Labina®- Purina) ad libitum até o início dos experimentos. Todos os procedimentos foram aprovados pelo Comitê de Ética em Pesquisa com Animais da UFS (Protocolo # 60/2012). Os animais foram divididos de modo a constituir os grupos Controle (ratos com acesso à água ad libitum, durante quatro dias, n = 6 - 7); Controle + Dexa (ratos com acesso à água ad libitum, durante quatro dias, e tratados com dexametasona, n = 6 - 7); SL4 (ratos com acesso à sobrecarga salina ad libitum, solução de NaCl 1,8%, durante quatro dias, n = 6 - 7); SL4 + Dexa (ratos com acesso à sobrecarga salina ad libitum, NaCl 1,8%, durante quatro dias e tratados com dexametasona, n = 6 - 7). A dexametasona (10 mg / kg, i.p.) foi administrada apenas no 4º dia, 12h e 2 h antes da perfusão para coleta do cérebro e realização da dupla imunofluorescência OT/p65 ou eutanásia para coleta de sangue do tronco e posterior dosagem de angiotensina II (ANGII). Os dados comportamentais e de dosagem hormonal obtidos foram submetidos ao teste ANOVA de duas vias e pós-teste Bonferroni. Os resultados obtidos da imuno-histoquímica, para a marcação de neurônios expressando ocitocina e/ou p65, foram submetidos à avaliação qualitativa. Verificou-se que os animais SL4 ingeriram mais fluido que seus controles, no segundo (p < 0,01), terceiro (p < 0,001) e quarto (p < 0,001) dia experimental. A SL4 elevou a concentração plasmática de ANGII (p < 0,01). A análise qualitativa da dupla imunofluorescência OT/p65 no PVN e SON revelou uma fraca imunorreatividade à ocitocina nos grupos SL4 e SL4 + Dexa, quando comparados aos grupos Controle e Controle + Dexa. Observou-se expressão da subunidade p65 do NF-κB em todas áreas hipotalâmicas estudadas, com imunorreatividade predominantemente citoplasmática em todos os grupos. Estes dados mostram que a subunidade p65 do NF-κB está presente em neurônios ocitocinérgicos das principais áreas hipotalâmicas que integram os eixos do estresse (HHA) e do equilíbrio hidroeletrolítico (SHNH). Mais estudos são necessários a fim de esclarecer sobre a real participação da via intracelular do NF-κB evocada pela desidratação intracelular, nos ajustes hidroeletrolíticos endócrinos e comportamentais.
|
40 |
Efeitos da terapia hormonal na resposta ao estresse em modelo animal de perimenopausa / Effects of hormonal therapy on stress response in na animal modelo of perimenopauseIsabelle Rodrigues dos Santos 05 June 2018 (has links)
A perimenopausa é caracterizada como o período de transição da vida reprodutiva para a não reprodutiva em mulheres, e inicia-se com o aparecimento dos sintomas clínicos, prolongandose até um ano após a última menstruação. Esta fase é caracterizada pela ocorrência de ciclos menstruais irregulares, alterações na produção hormonal, bem como por mudanças comportamentais, neuroendócrinas e metabólicas, sendo o período de maior vulnerabilidade a desordens afetivas quando comparado às outras fases da vida. Apesar dos diversos estudos desenvolvidos acerca das manifestações destes sintomas durante a perimenopausa, ainda pouco se sabe a respeito das modificações na atividade do eixo hipotálamo-hipófise-adrenal (HPA) e da resposta ao estresse. O reagente químico diepóxido de 4-vinilciclohexeno (VCD) acelera o processo natural de atresia folicular, possibilitando estudos desta fase da vida reprodutiva. Assim sendo, sua aplicação em roedores constitui um excelente modelo experimental capaz de simular em animais o que ocorre durante a perimenopausa. Assim, os objetivos deste trabalho foram avaliar, neste modelo animal de perimenopausa: 1) as respostas endócrinas (corticosterona e progesterona) e neuroniais (atividade das subdivisões parvocelulares medial e posterior - PaMP e PaPo do núcleo paraventricular do hipotálamo (PVN) e do locus coeruleus - LC) ao estresse de contenção e 2) a influência da terapia hormonal sobre estas respostas. Para tanto, ratas Wistar receberam injeções subcutâneas de Óleo ou VCD por 15 dias consecutivos, a partir do 28° dia de vida. Ao redor do 56º ao 66º dia do início da administração de Óleo ou VCD, as ratas dos grupos a serem estressados receberam implantes subcutâneos de um pellet contendo placebo (PL), estradiol (E2), progesterona (P4) ou estradiol+progesterona (E2P4). O estresse de contenção foi aplicado por 30 minutos entre 09:00h e 10:00h na fase do diestro, ou 20 dias após o início da terapia hormonal (grupos VCD+E2, VCD+P4 e VCD+E2P4), de 75 a 85 dias após o início da administração de VCD/Óleo. O sangue foi coletado imediatamente (0min) e 60min após o final do estresse, quando os animais foram anestesiados e perfundidos para obtenção do tecido cerebral e posterior estudo imunohistoquímico das áreas de interesse. As concentrações basais de corticosterona foram semelhantes entre os grupos Óleo e VCD não estressadas. Contudo, asecreção de corticosterona em resposta ao estresse das ratas em periestropausa foi 72% menor que a do grupo controle. As concentrações basais de progesterona das ratas em periestropausa foram menores do que aquelas das ratas controles, mas o aumento da secreção deste hormônio induzido pelo estresse agudo por contenção não foi diferente entre os grupos. Centralmente, nas subdivisões PaMP e PaPo do PVN, assim como no LC, o número de neurônios c-Fos positivos expressos não foi diferente entre ratas VCD e óleo e o estresse aumentou de maneira semelhante o número de neurônios ativados em ambos os grupos. A secreção de corticosterona de animais em periestropausa tratados com estradiol, associado ou não à progesterona, foi ainda mais atenuada. Por outro lado, nas ratas tratadas com progesterona, as concentrações de corticosterona após o estresse mostraram-se mais elevadas que as do grupo VCD estressado sem tratamento hormonal. Todos os grupos tratados com hormônios aumentaram a secreção de progesterona em resposta ao estresse, no entanto esta resposta foi amplificada pelo estradiol. Nenhum dos tratamentos hormonais modificou a atividade neuronial após o estresse na PaMP, embora todos tenham atenuado esta resposta na PaPo. No LC, todos os tratamentos bloquearam o aumento de atividade neuronial induzida pelo estresse. Uma hora após o final do estresse, as concentrações de corticosterona e progesterona retornaram aos níveis basais observados nas ratas não estressadas. No entanto, nos grupos tratados com estradiol, os níveis de progesterona não retornaram aos basais, sendo estes níveis significantemente maiores após o fim do estímulo. Em conjunto, nossos resultados demonstram que na periestropausa, embora a secreção de progesterona em resposta ao estresse esteja preservada, a capacidade da adrenal em secretar corticosterona está reduzida. Esta redução parece não estar associada à deficiência central no funcionamento do eixo HPA (PVN) ou do sistema simpático central (LC), mas sim, a disfunções na esteroidogênese adrenal, que foram parcialmente corrigidas pela progesterona exógena. A diminuição da atividade neuronial do LC pelos esteróides ovarianos sugere uma possível atenuação do tônus simpático por estes hormônios. Ainda, a capacidade de recuperação pós-estresse da secreção de corticosterona e de progesterona se mostrou preservada neste modelo experimental. / Perimenopause is characterized as the period of transition from reproductive to nonreproductive life in women, and begins with the onset of clinical symptoms, lasting up to one year after the last menstrual period. This phase is characterized by irregular menstrual cycles, alterations in hormonal production, as well as by behavioral, neuroendocrine and metabolic changes, and increased vulnerability to affective disorders when compared to other phases of life. Despite the various studies on the manifestations of these symptoms during perimenopause, little is known about the changes in hypothalamic-pituitary-adrenal (HPA) axis activity and the response to stress. The chemical reagent diepoxide 4-vinylcyclohexene (VCD) accelerates the natural process of follicular atresia, enabling studies of this phase of reproductive life. Therefore, its application in rodents constitutes an excellent experimental model capable of simulating in animals what occurs during perimenopause. Thus, the objective of this study was to evaluate, in an animal model of perimenopause: 1) the endocrine responses (corticosterone and progesterone) as well as the neuronal response (parvocellular subdivisions of PVN, medial- PaMP) and posterior-PaPO and locus coeruleus - LC) to restraint stress and 2) the influence of hormonal therapy on these responses. Female Wistar rats received subcutaneous injections of Oil or VCD for 15 consecutive days, from the 28th day of life. Around the 56th to 66th day of the onset of Oil or VCD administration, the rats of the groups to be stressed received subcutaneous implants of a pellet containing placebo (PL), estradiol (E2), progesterone (P4) or estradiol + progesterone (E2P4 ). Restraint stress was applied for 30 minutes between 09:00 and 10:00 in the diestrus phase, or 20 days after the onset of hormonal therapy (VCD + E2, VCD + P4 and VCD + E2P4 groups), from 75 to 85 days after starting VCD / Oil administration. The blood was collected immediately (0min) and 60min after the end of stress, when the animals were anesthetized and perfused to take the brain for immunohistochemistry of PVN and LC. Basal corticosterone concentrations were similar between the non-stressed Oil and VCD groups. However, corticosterone secretion in response to stress was 72% lower than that of the control group. The basal progesterone concentrations of periestropausal rats were lower than those of the control rats, but the increase in the secretion of this hormone induced by stress was not different between thegroups. Centrally, in the PaMP and PaPO subdivisions of PVN as well as LC, the number of c-Fos positive neurons expressed was not different between VCD and Oil rats and the stress increased similarly the number of activated neurons in both groups. Corticosterone secretion from estradiol-treated periestropause rats, associated or not with progesterone, was further attenuated. On the other hand, in rats treated with progesterone, post-stress corticosterone concentrations were higher than those in the stressed VCD group without hormonal treatment. All groups treated with hormones increased progesterone secretion in response to stress, however this response was amplified by estradiol. None of the hormone treatments modified neuronal activity after stress in PaMP, although all hormone treatment attenuated this response in PaPo. In the LC, all treatments blocked the increase of neuronal activity induced by stress. One hour after the end of stress, corticosterone and progesterone concentrations returned to the baseline levels observed in the non-stressed rats. However, in the estradioltreated groups, progesterone levels did not return to the basal levels, these levels being significantly higher after the end of the stimulus. Taken together, our results demonstrate that in periestropause, although progesterone secretion in response to stress is preserved, the ability of the adrenal to secrete corticosterone is reduced. This reduction appears not to be associated with a central deficiency in HPA axis (PVN) or central sympathetic (LC) function, but rather to dysfunctions in adrenal steroidogenesis, which have been partially corrected by exogenous progesterone. The reduction of neuronal LC activity by ovarian steroids suggests a possible attenuation of sympathetic tone by these hormones. Furthermore, the post-stress recovery capacity of corticosterone and progesterone secretion seems to be preserved in this experimental model.
|
Page generated in 0.1101 seconds