• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reconnaissance automatique de la parole non native

Tien Ping, Tan 03 July 2008 (has links) (PDF)
Les technologies de reconnaissance automatique de la parole sont désormais intégrées dans de nombreux systèmes. La performance des systèmes de reconnaissance vocale pour les locuteurs non natifs continue cependant à souffrir de taux d'erreur élevés, en raison de la différence entre la parole non native et les modèles entraînés. La réalisation d'enregistrements en grande quantité de parole non native est souvent difficile et peu réaliste pour représenter toutes les origines des locuteurs. <br />Dans cette thèse, nous proposons des approches pour adapter les modèles acoustiques et de prononciation sous différentes conditions de ressource pour les locuteurs non natifs. Un travail préliminaire sur l'identification d'accent a également proposé.<br />Ce travail de thèse repose sur le concept de modélisation acoustique translingue qui permet de représenter les locuteurs non natifs dans un espace multilingue sans utiliser (ou en utilisant très peu) de parole non native. Une approche hybride d'interpolation et de fusion est proposée pour l'adaptation des modèles en langue cible en utilisant une collection de modèles acoustiques multilingues. L'approche proposée est également utile pour la modélisation du contexte de prononciation. Si, en revanche, des corpus multilingues sont disponibles, des méthodes d'interpolation peuvent être utilisées pour l'adaptation à la parole non native. Deux d'entre elles sont proposées pour une adaptation supervisée et peuvent être employées avec seulement quelques phrases non natives.<br />En ce qui concerne la modélisation de la prononciation, deux approches existantes (l'une fondée sur la modification du dictionnaire de prononciation, l'autre fondée sur la définition d'un score de prononciation utilisé dans une phase de re-scoring) sont revisitées dans cette thèse et adaptées pour fonctionner sur une quantité de données limitée. Une nouvelle approche de groupement de locuteurs selon leurs habitudes de prononciation, est également présentée : nous l'appelons « analyse de prononciation latente ». Cette approche se révèle également utile pour améliorer le modèle de prononciation pour la reconnaissance automatique de la parole non native.<br />Enfin, une méthode d'identification d'accent est proposée. Elle nécessite une petite quantité de parole non native pour créer les modèles d'accents. Ceci est rendu possible en utilisant la capacité de généralisation des arbres de décision et en utilisant des ressources multilingues pour augmenter la performance du modèle d'accent.
2

Contributions à la reconnaissance automatique de la parole non-native

Bouselmi, Ghazi 12 November 2008 (has links) (PDF)
Le travail présenté dans cette thèse s'inscrit dans le cadre de la RAP non native. Les recherches que nous avons entreprises ont pour but d'aténuer l'impact des accents non natifs sur les performances des systèmes de RAP. Nous avons proposé une nouvelle approche pour la modélisation des prononciations non natives permettant de prendre en compte plusieurs accents étrangers. Cette approche automatique utilise un corpus de parole non native et deus ensembles de modèles acoustiques: le premier ensemble représente l'accent canonique de la langue cible et le deuxième représente l'accent étranger. Les modèles acoustiques du premier ensemble sont modifiés par l'ajout de nouveaux chemins d'états HMM. Cette approche nécessite la connaissance a priori de la langue d'origine des locuteurs. A cet égard, nous avons proposé une nouvelle approche pour la détection de la langue maternelle basée sur la détection des séquences discriminantes de phonèmes.
3

Contributions à la Reconnaissance Automatique de la Parole Non Native / Contributions to non-native automatic speech recognition

Bouselmi, Ghazi 12 November 2008 (has links)
La RAP non native souffre encore d'une chute significative de précision. Cette dégradation est due aux erreurs d'accent et de prononciation que produisent les locuteurs non natifs. Les recherches que nous avons entreprises ont pour but d'atténuer l'impact des accents non natifs sur les performances des systèmes de RAP. Nous avons proposé une nouvelle approche pour la modélisation de prononciation non native permettant de prendre en compte plusieurs accents étrangers. Cette approche automatique utilise un corpus de parole non native et deux ensembles de modèles acoustiques: le premier ensemble représente l'accent canonique de la langue cible et le deuxième représente l'accent étranger. Les modèles acoustiques du premier ensemble sont modifiés par l'ajout de nouveaux chemins d'états HMM. Nous avons proposé une nouvelle approche pour la détection de la langue maternelle basée sur la détection de séquences discriminantes de phonèmes. Par ailleurs, nous avons proposé une approche de modélisation de prononciation non native multi-accent permettant de prendre en compte plusieurs accents étrangers simultanément. D'autre part, nous avons proposé l'utilisation de contraintes graphémiques. Nous avons conçu une approche automatique pour la detection des contraintes graphémiques et leur prise en compte pour l'approche de RAP non native. Vu que notre méthode de modélisation de prononciation augmente la complexité des modèles acoustiques, nous avons étudié les approches de calcul rapide de vraisemblance pour les GMM. En outre, Nous avons proposé trois nouvelles approches efficaces dont le but est l'accélération du calcul de vraisemblance sans dégradation de la précision. / Automatic speech recognition systems are still vulnerable to non native accents. Their precision drastically drops as non native speakers commit acoustic and pronunciation errors. We have proposed a new approach for non native ASR based on pronunciation modelling. This approach uses a non native speech corpus and two sets of acoustic models: the first set stands for the canoncial target language accent and the second stands for the non native accent. It is an automated approach that associates, to each phoneme from the first set of models, one or several non native pronunciations each expressed as a sequence of phonemes from the second set of models. These pronunciations are taken into account through adding new HMM paths to the models of each phoneme from the first set of models. We have developed a new approach for the automatic detection of the mother tong of non native speakers. This approach is based on the detection of discriminative phoneme sequences, and is used as a first step of the ASP process. As opposed to origin detection, we have proposed a multi-accent non native pronunciation modeling approach that takes into account several foreign accents. Besides, we have developed an approach of automatic phoneme-grapheme alignment in order to take into account the graphemic constraints within the non native pronunciation modeling. The gaol of this procedure is the sharpen the pronunciation modeling and enhance the ASR accuracy. We have studied some fast likelihood computation techinques, and we have proposed three novel appraoches that aim at enhancing likelihood computation speed without harming ASR precision.
4

Vers une adaptation autonome des modèles acoustiques multilingues pour le traitement automatique de la parole

Sam, Sethserey 07 June 2011 (has links) (PDF)
Les technologies de reconnaissance automatique de la parole sont désormais intégrées dans de nombreux systèmes. La performance des systèmes de reconnaissance vocale pour les locuteurs non natifs continue cependant à souffrir de taux d'erreur élevés, en raison de la différence entre la parole non native et les modèles entraînés. La réalisation d'enregistrements en grande quantité de parole non native est généralement une tâche très difficile et peu réaliste pour représenter toutes les origines des locuteurs. Ce travail de thèse porte sur l'amélioration des modèles acoustiques multilingues pour la transcription phonétique de la parole de type " réunion multilingue ". Traiter ce type de parole constitue plusieurs défis : 1) il peut exister de la conversation entre des locuteurs natifs et non natifs ; 2) il y a non seulement de la parole non native d'une langue, mais de plusieurs langues parlées par des locuteurs venant de différentes origines ; 3) il est difficile de collecter suffisamment de données pour amorcer les systèmes de transcription. Pour répondre à ces défis, nous proposons un processus d'adaptation de modèles acoustiques multilingues que nous appelons " adaptation autonome ". Dans l'adaptation autonome, nous étudions plusieurs approches pour adapter les modèles acoustiques multilingues de manière non supervisée (les langues parlées et les origines des locuteurs ne sont pas connues à l'avance) et qui n'utilise aucune donnée supplémentaire lors du processus d'adaptation. Les approches étudiées sont décomposées selon deux modules. Le premier module qui s'appelle " l'observateur de langues " consiste à récupérer les caractéristiques linguistiques (les langues parlées et les origines des locuteurs) des segments à décoder. Le deuxième module consiste à adapter le modèle acoustique multilingue en fonction des connaissances fournies par l'observateur de langue. Pour évaluer l'utilité de l'adaptation autonome d'un modèle acoustique multilingue, nous utilisons les données de test, qui sont extraites de réunions multilingues, contenant de la parole native et non native de trois langues : l'anglais (EN), le français (FR) et le vietnamien (VN). Selon les résultats d'expérimentation, l'adaptation autonome donne des résultats prometteurs pour les paroles non natives mais dégradent très légèrement les performances sur de la parole native. Afin d'améliorer la performance globale des systèmes de transcription pour toutes les paroles natives et non natives, nous étudions plusieurs approches de détection de parole non native et proposons de cascader un tel détecteur avec notre processus d'adaptation autonome. Les résultats obtenus ainsi, sont les meilleurs parmi toutes les expériences réalisées sur notre corpus de réunions multilingues.
5

Vers une adaptation autonome des modèles acoustiques multilingues pour le traitement automatique de la parole / Towards autonomous adaptation of multilingual acoustic models for automatic speech processing

Sam, Sethserey 07 June 2011 (has links)
Les technologies de reconnaissance automatique de la parole sont désormais intégrées dans de nombreux systèmes. La performance des systèmes de reconnaissance vocale pour les locuteurs non natifs continue cependant à souffrir de taux d'erreur élevés, en raison de la différence entre la parole non native et les modèles entraînés. La réalisation d'enregistrements en grande quantité de parole non native est généralement une tâche très difficile et peu réaliste pour représenter toutes les origines des locuteurs. Ce travail de thèse porte sur l'amélioration des modèles acoustiques multilingues pour la transcription phonétique de la parole de type « réunion multilingue ». Traiter ce type de parole constitue plusieurs défis : 1) il peut exister de la conversation entre des locuteurs natifs et non natifs ; 2) il y a non seulement de la parole non native d'une langue, mais de plusieurs langues parlées par des locuteurs venant de différentes origines ; 3) il est difficile de collecter suffisamment de données pour amorcer les systèmes de transcription. Pour répondre à ces défis, nous proposons un processus d'adaptation de modèles acoustiques multilingues que nous appelons « adaptation autonome ». Dans l'adaptation autonome, nous étudions plusieurs approches pour adapter les modèles acoustiques multilingues de manière non supervisée (les langues parlées et les origines des locuteurs ne sont pas connues à l'avance) et qui n'utilise aucune donnée supplémentaire lors du processus d'adaptation. Les approches étudiées sont décomposées selon deux modules. Le premier module qui s'appelle « l'observateur de langues » consiste à récupérer les caractéristiques linguistiques (les langues parlées et les origines des locuteurs) des segments à décoder. Le deuxième module consiste à adapter le modèle acoustique multilingue en fonction des connaissances fournies par l'observateur de langue. Pour évaluer l'utilité de l'adaptation autonome d'un modèle acoustique multilingue, nous utilisons les données de test, qui sont extraites de réunions multilingues, contenant de la parole native et non native de trois langues : l'anglais (EN), le français (FR) et le vietnamien (VN). Selon les résultats d'expérimentation, l'adaptation autonome donne des résultats prometteurs pour les paroles non natives mais dégradent très légèrement les performances sur de la parole native. Afin d'améliorer la performance globale des systèmes de transcription pour toutes les paroles natives et non natives, nous étudions plusieurs approches de détection de parole non native et proposons de cascader un tel détecteur avec notre processus d'adaptation autonome. Les résultats obtenus ainsi, sont les meilleurs parmi toutes les expériences réalisées sur notre corpus de réunions multilingues. / Automatic speech recognition technologies are now integrated into many systems. The performance of speech recognition systems for non-native speakers, however, continues to suffer high error rates, due to the difference between native and non-speech models trained. The making of recordings in large quantities of non-native speech is typically a very difficult and impractical to represent all the origins of the speakers. This thesis focuses on improving multilingual acoustic models for automatic phonetic transcription of speech such as “multilingual meeting”. There are several challenges in “multilingual meeting” speech: 1) there can be a conversation between native and non native speakers ; 2) there is not only one spoken language but several languages spoken by speakers from different origins ; 3) it is difficult to collect sufficient data to bootstrapping transcription systems. To meet these challenges, we propose a process of adaptation of multilingual acoustic models is called "autonomous adaptation". In autonomous adaptation, we studied several approaches for adapting multilingual acoustic models in unsupervised way (spoken languages and the origins of the speakers are not known in advance) and no additional data is used during the adaptation process. The approaches studied are decomposed into two modules. The first module called "the language observer" is to recover the linguistic information (spoken languages and the origins of the speakers) of the segments to be decoded. The second module is to adapt the multilingual acoustic model based on knowledge provided by the language observer. To evaluate the usefulness of autonomous adaptation of multilingual acoustic model, we use the test data, which are extracted from multilingual meeting corpus, containing the native and nonnative speech of three languages: English (EN), French (FR) and Vietnamese (VN). According to the experiment results, the autonomous adaptation shows promising results for non native speech but very slightly degrade performance on native speech. To improve the overall performance of transcription systems for all native and non native speech, we study several approaches for detecting non native speech and propose such a detector cascading with our self-adaptation process (autonomous adaptation). The results thus are the best among all experiments done on our corpus of multilingual meetings.

Page generated in 0.0867 seconds