• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aplicação da equação de Poisson-Boltzmann modificada em sistemas biológicos: análise da partição iônica em um eritrócito / Application of the modified Poisson-Boltzmann equation in biological systems: analysis of ion partition in an erythrocyte

Nathalia Salles Vernin Barbosa 25 April 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, a partição iônica e o potencial de membrana em um eritrócito são analisados via equação de Poisson-Boltzmann modificada, considerando as interações não eletrostáticas presentes entre os íons e macromoléculas, assim como, o potencial β. Este potencial é atribuído à diferença de potencial químico de referência entre os meios intracelular e extracelular e ao transporte ativo de íons. O potencial de Gibbs-Donnan via equação de Poisson-Boltzmann na presença de carga fixa em um sistema contendo uma membrana semipermeável também é estudado. O método de aproximação paraboloide em elementos finitos em um sistema estacionário e unidimensionalé aplicado para resolver a equação de Poisson-Boltzmann em coordenadas cartesianas e esféricas. O parâmetro de dispersão relativo às interações não eletrostáticas écalculado via teoria de Lifshitz. Os resultados em relação ao potencial de Gibbs-Donnan mostram-se adequados, podendo ser calculado pela equação de Poisson-Boltzmann. No sistema contendo um eritrócito, quando o potencial β é considerado igual a zero, não se verifica a diferença iônica observada experimentalmente entre os meios intracelular e extracelular. Dessa forma, os potenciais não eletrostáticos calculados via teoria de Lifshitz têm apenas uma pequena influência no que se refere à alta concentração de íon K+ no meio intracelular em relação ao íon Na+ / In this work, the ionic partition and the membrane potential in an erythrocyte are analyzed by modified Poisson-Boltzmann equation, considering non-electrostatic interactions between ions and macromolecules as well as the β potential. This potential is attributed to the difference in chemical potential reference states between intracellular and extracellular environment and the active transport of ions. The Gibbs-Donnan potential is also studied usingthe Poisson-Boltzmann equation with fixed chargeon a system containing a semipermeable membrane. The second order spline finite elements methodin a steady one-dimensional system is applied to solve the Poisson-Boltzmann equation in Cartesian and spherical coordinates.The dispersion parameter of the non-electrostatic interactions is calculated by Lifshitztheory. The results regarding the Gibbs-Donnan potential are adequate and can be calculated by the Poisson-Boltzmann equation. In a system containing an erythrocyte, when the β potential is considered equal to zero, it doesnt check the ionic difference observed experimentally between the intracellular and extracellular environment. Thus, non-electrostatic interactions calculated by Lifshitz theory have only a small influence in the high K+level inside cells while keeping Na+ outside
2

Aplicação da equação de Poisson-Boltzmann modificada em sistemas biológicos: análise da partição iônica em um eritrócito / Application of the modified Poisson-Boltzmann equation in biological systems: analysis of ion partition in an erythrocyte

Nathalia Salles Vernin Barbosa 25 April 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, a partição iônica e o potencial de membrana em um eritrócito são analisados via equação de Poisson-Boltzmann modificada, considerando as interações não eletrostáticas presentes entre os íons e macromoléculas, assim como, o potencial β. Este potencial é atribuído à diferença de potencial químico de referência entre os meios intracelular e extracelular e ao transporte ativo de íons. O potencial de Gibbs-Donnan via equação de Poisson-Boltzmann na presença de carga fixa em um sistema contendo uma membrana semipermeável também é estudado. O método de aproximação paraboloide em elementos finitos em um sistema estacionário e unidimensionalé aplicado para resolver a equação de Poisson-Boltzmann em coordenadas cartesianas e esféricas. O parâmetro de dispersão relativo às interações não eletrostáticas écalculado via teoria de Lifshitz. Os resultados em relação ao potencial de Gibbs-Donnan mostram-se adequados, podendo ser calculado pela equação de Poisson-Boltzmann. No sistema contendo um eritrócito, quando o potencial β é considerado igual a zero, não se verifica a diferença iônica observada experimentalmente entre os meios intracelular e extracelular. Dessa forma, os potenciais não eletrostáticos calculados via teoria de Lifshitz têm apenas uma pequena influência no que se refere à alta concentração de íon K+ no meio intracelular em relação ao íon Na+ / In this work, the ionic partition and the membrane potential in an erythrocyte are analyzed by modified Poisson-Boltzmann equation, considering non-electrostatic interactions between ions and macromolecules as well as the β potential. This potential is attributed to the difference in chemical potential reference states between intracellular and extracellular environment and the active transport of ions. The Gibbs-Donnan potential is also studied usingthe Poisson-Boltzmann equation with fixed chargeon a system containing a semipermeable membrane. The second order spline finite elements methodin a steady one-dimensional system is applied to solve the Poisson-Boltzmann equation in Cartesian and spherical coordinates.The dispersion parameter of the non-electrostatic interactions is calculated by Lifshitztheory. The results regarding the Gibbs-Donnan potential are adequate and can be calculated by the Poisson-Boltzmann equation. In a system containing an erythrocyte, when the β potential is considered equal to zero, it doesnt check the ionic difference observed experimentally between the intracellular and extracellular environment. Thus, non-electrostatic interactions calculated by Lifshitz theory have only a small influence in the high K+level inside cells while keeping Na+ outside

Page generated in 0.0399 seconds