• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A PDE-based head visualization method with CT data

Chen, C., Sheng, Y., Li, F., Zhang, G., Ugail, Hassan 30 November 2015 (has links)
No / In this paper, we extend the use of the partial differential equation (PDE) method to head visualization with computed tomography (CT) data and show how the two primary medical visualization means, surface reconstruction, and volume rendering can be integrated into one single framework through PDEs. Our scheme first performs head segmentation from CT slices using a variational approach, the output of which can be readily used for extraction of a small set of PDE boundary conditions. With the extracted boundary conditions, head surface reconstruction is then executed. Because only a few slices are used, our method can perform head surface reconstruction more efficiently in both computational time and storage cost than the widely used marching cubes algorithm. By elaborately introducing a third parameter w to the PDE method, a solid head can be created, based on which the head volume is subsequently rendered with 3D texture mapping. Instead of designing a transfer function, we associate the alpha value of texels of the 3D texture with the PDE parameter w through a linear transform. This association enables the production of a visually translucent head volume. The experimental results demonstrate the feasibility of the developed head visualization method.
2

Method of modelling facial action units using partial differential equations

Ugail, Hassan, Ismail, N.B. January 2016 (has links)
No / In this paper we discuss a novel method of mathematically modelling facial action units for accurate representation of human facial expressions in 3- dimensions. Our method utilizes the approach of Facial Action Coding System (FACS). It is based on a boundary-value approach, which utilizes a solution to a fourth order elliptic Partial Differential Equation (PDE) subject to a suitable set of boundary conditions. Here the PDE surface generation method for human facial expressions is utilized in order to generate a wide variety of facial expressions in an efficient and realistic way. For this purpose, we identify a set of boundary curves corresponding to the key features of the face which in turn define a given facial expression in 3-dimensions. The action units (AUs) relating to the FACS are then efficiently represented in terms of Fourier coefficients relating to the boundary curves which enables us to store both the face and the facial expressions in an efficient way.

Page generated in 0.1552 seconds