• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linear and Non-linear Monotone Methods for Valuing Financial Options Under Two-Factor, Jump-Diffusion Models

Clift, Simon Sivyer January 2007 (has links)
The evolution of the price of two financial assets may be modeled by correlated geometric Brownian motion with additional, independent, finite activity jumps. Similarly, the evolution of the price of one financial asset may be modeled by a stochastic volatility process and finite activity jumps. The value of a contingent claim, written on assets where the underlying evolves by either of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic, partial integro-differential equation (PIDE). The focus of this thesis is the development of new, efficient numerical solution approaches for these PIDE's for both linear and non-linear cases. A localization scheme approximates the initial-value problem on an infinite spatial domain by an initial-boundary value problem on a finite spatial domain. Convergence of the localization method is proved using a Green's function approach. An implicit, finite difference method discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation are examined under both maximum and von Neumann analysis. Three linearly convergent, monotone variants of the approach are reviewed for the constant coefficient, two-asset case and reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE. A fixed point iteration solves the discrete, algebraic equations at each time step. This iteration avoids solving a dense linear system through the use of a lagged integral evaluation. Dense matrix-vector multiplication is avoided by using an FFT method. By using Green's function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is shown to be rapidly convergent under typical market parameters. Combined with a penalty iteration, the value of options with an American early exercise feature may be computed. The rapid convergence of the iteration is verified in numerical tests using European and American options with vanilla payoffs, and digital, one-touch option payoffs. These tests indicate that the localization method for the PIDE's is effective. Adaptations are developed for degenerate or extreme parameter sets. The three monotone approaches are compared by computational cost and resulting error. For the stochastic volatility case, grid rotation is found to be the preferred approach. Finally, a new algorithm is developed for the solution of option values in the non-linear case of a two-factor option where the jump parameters are known only to within a deterministic range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization is used and a new fixed point, policy iteration developed for time step solution. Analysis proves that the new iteration is globally convergent under a mild time step restriction. Numerical tests demonstrate the overall convergence of the method and investigate the financial implications of uncertain parameters on the option value.
2

Linear and Non-linear Monotone Methods for Valuing Financial Options Under Two-Factor, Jump-Diffusion Models

Clift, Simon Sivyer January 2007 (has links)
The evolution of the price of two financial assets may be modeled by correlated geometric Brownian motion with additional, independent, finite activity jumps. Similarly, the evolution of the price of one financial asset may be modeled by a stochastic volatility process and finite activity jumps. The value of a contingent claim, written on assets where the underlying evolves by either of these two-factor processes, is given by the solution of a linear, two-dimensional, parabolic, partial integro-differential equation (PIDE). The focus of this thesis is the development of new, efficient numerical solution approaches for these PIDE's for both linear and non-linear cases. A localization scheme approximates the initial-value problem on an infinite spatial domain by an initial-boundary value problem on a finite spatial domain. Convergence of the localization method is proved using a Green's function approach. An implicit, finite difference method discretizes the PIDE. The theoretical conditions for the stability of the discrete approximation are examined under both maximum and von Neumann analysis. Three linearly convergent, monotone variants of the approach are reviewed for the constant coefficient, two-asset case and reformulated for the non-constant coefficient, stochastic volatility case. Each monotone scheme satisfies the conditions which imply convergence to the viscosity solution of the localized PIDE. A fixed point iteration solves the discrete, algebraic equations at each time step. This iteration avoids solving a dense linear system through the use of a lagged integral evaluation. Dense matrix-vector multiplication is avoided by using an FFT method. By using Green's function analysis, von Neumann analysis and maximum analysis, the fixed point iteration is shown to be rapidly convergent under typical market parameters. Combined with a penalty iteration, the value of options with an American early exercise feature may be computed. The rapid convergence of the iteration is verified in numerical tests using European and American options with vanilla payoffs, and digital, one-touch option payoffs. These tests indicate that the localization method for the PIDE's is effective. Adaptations are developed for degenerate or extreme parameter sets. The three monotone approaches are compared by computational cost and resulting error. For the stochastic volatility case, grid rotation is found to be the preferred approach. Finally, a new algorithm is developed for the solution of option values in the non-linear case of a two-factor option where the jump parameters are known only to within a deterministic range. This case results in a Hamilton-Jacobi-Bellman style PIDE. A monotone discretization is used and a new fixed point, policy iteration developed for time step solution. Analysis proves that the new iteration is globally convergent under a mild time step restriction. Numerical tests demonstrate the overall convergence of the method and investigate the financial implications of uncertain parameters on the option value.
3

Option Pricing using Fourier Space Time-stepping Framework

Surkov, Vladimir 03 March 2010 (has links)
This thesis develops a generic framework based on the Fourier transform for pricing and hedging of various options in equity, commodity, currency, and insurance markets. The pricing problem can be reduced to solving a partial integro-differential equation (PIDE). The Fourier Space Time-stepping (FST) framework developed in this thesis circumvents the problems associated with the existing finite difference methods by utilizing the Fourier transform to solve the PIDE. The FST framework-based methods are generic, highly efficient and rapidly convergent. The Fourier transform can be applied to the pricing PIDE to obtain a linear system of ordinary differential equations that can be solved explicitly. Solving the PIDE in Fourier space allows for the integral term to be handled efficiently and avoids the asymmetrical treatment of diffusion and integral terms, common in the finite difference schemes found in the literature. For path-independent options, prices can be obtained for a range of stock prices in one iteration of the algorithm. For exotic, path-dependent options, a time-stepping methodology is developed to handle barriers, free boundaries, and exercise policies. The thesis includes applications of the FST framework-based methods to a wide range of option pricing problems. Pricing of single- and multi-asset, European and path-dependent options under independent-increment exponential Levy stock price models, common in equity and insurance markets, can be done efficiently via the cornerstone FST method. Mean-reverting Levy spot price models, common in commodity markets, are handled by introducing a frequency transformation, which can be readily computed via scaling of the option value function. Generating stochastic volatility, to match the long-term equity options market data, and stochastic skew, observed in currency markets, is addressed by introducing a non-stationary extension of multi-dimensional Levy processes using regime-switching. Finally, codependent jumps in multi-asset models are introduced through copulas. The FST methods are computationally efficient, running in O(MN^d log_2 N) time with M time steps and N space points in each dimension on a d-dimensional grid. The methods achieve second-order convergence in space; for American options, a penalty method is used to attain second-order convergence in time. Furthermore, graphics processing units are utilized to further reduce the computational time of FST methods.
4

Option Pricing using Fourier Space Time-stepping Framework

Surkov, Vladimir 03 March 2010 (has links)
This thesis develops a generic framework based on the Fourier transform for pricing and hedging of various options in equity, commodity, currency, and insurance markets. The pricing problem can be reduced to solving a partial integro-differential equation (PIDE). The Fourier Space Time-stepping (FST) framework developed in this thesis circumvents the problems associated with the existing finite difference methods by utilizing the Fourier transform to solve the PIDE. The FST framework-based methods are generic, highly efficient and rapidly convergent. The Fourier transform can be applied to the pricing PIDE to obtain a linear system of ordinary differential equations that can be solved explicitly. Solving the PIDE in Fourier space allows for the integral term to be handled efficiently and avoids the asymmetrical treatment of diffusion and integral terms, common in the finite difference schemes found in the literature. For path-independent options, prices can be obtained for a range of stock prices in one iteration of the algorithm. For exotic, path-dependent options, a time-stepping methodology is developed to handle barriers, free boundaries, and exercise policies. The thesis includes applications of the FST framework-based methods to a wide range of option pricing problems. Pricing of single- and multi-asset, European and path-dependent options under independent-increment exponential Levy stock price models, common in equity and insurance markets, can be done efficiently via the cornerstone FST method. Mean-reverting Levy spot price models, common in commodity markets, are handled by introducing a frequency transformation, which can be readily computed via scaling of the option value function. Generating stochastic volatility, to match the long-term equity options market data, and stochastic skew, observed in currency markets, is addressed by introducing a non-stationary extension of multi-dimensional Levy processes using regime-switching. Finally, codependent jumps in multi-asset models are introduced through copulas. The FST methods are computationally efficient, running in O(MN^d log_2 N) time with M time steps and N space points in each dimension on a d-dimensional grid. The methods achieve second-order convergence in space; for American options, a penalty method is used to attain second-order convergence in time. Furthermore, graphics processing units are utilized to further reduce the computational time of FST methods.
5

Mathematical Modeling and Analysis of Options with Jump-Diffusion Volatility

Andreevska, Irena 09 April 2008 (has links)
Several existing pricing models of financial derivatives as well as the effects of volatility risk are analyzed. A new option pricing model is proposed which assumes that stock price follows a diffusion process with square-root stochastic volatility. The volatility itself is mean-reverting and driven by both diffusion and compound Poisson process. These assumptions better reflect the randomness and the jumps that are readily apparent when the historical volatility data of any risky asset is graphed. The European option price is modeled by a homogeneous linear second-order partial differential equation with variable coefficients. The case of underlying assets that pay continuous dividends is considered and implemented in the model, which gives the capability of extending the results to American options. An American option price model is derived and given by a non-homogeneous linear second order partial integro-differential equation. Using Fourier and Laplace transforms an exact closed-form solution for the price formula for European call/put options is obtained.
6

Stochastic Volatility And Stochastic Interest Rate Model With Jump And Its Application On General Electric Data

Celep, Saziye Betul 01 May 2011 (has links) (PDF)
In this thesis, we present two different approaches for the stochastic volatility and stochastic interest rate model with jump and analyze the performance of four alternative models. In the first approach, suggested by Scott, the closed form solution for prices on European call stock options are developed by deriving characteristic functions with the help of martingale methods. Here, we study the asset price process and give in detail the derivation of the European call option price process. The second approach, suggested by Bashki-Cao-Chen, describes the closed form solution of European call option by deriving the partial integro-differential equation. In this one we g ive the derivations of both asset price dynamics and the European call option price process. Finally, in the application part of the thesis, we examine the performance of four alternative models using General Electric Stock Option Data. These models are constructed by using the theoretical results of the second approach.
7

Credit Risk Modeling And Credit Default Swap Pricing Under Variance Gamma Process

Anar, Hatice 01 August 2008 (has links) (PDF)
In this thesis, the structural model in credit risk and the credit derivatives is studied under both Black-Scholes setting and Variance Gamma (VG) setting. Using a Variance Gamma process, the distribution of the firm value process becomes asymmetric and leptokurtic. Also, the jump structure of VG processes allows random default times of the reference entities. Among structural models, the most emphasis is made on the Black-Cox model by building a relation between the survival probabilities of the Black-Cox model and the value of a binary down and out barrier option. The survival probabilities under VG setting are calculated via a Partial Integro Differential Equation (PIDE). Some applications of binary down and out barrier options, default probabilities and Credit Default Swap par spreads are also illustrated in this study.

Page generated in 0.1562 seconds