• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 13
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efektivní výpočet viditelnosti pro simulaci přenosu světla v opticky aktivních médiích / Efficient visibility calculation for light transport simulation in participating media

Houška, Čestmír January 2013 (has links)
Title: Efficient visibility calculation for light transport simulation in participating media Author: Čestmír Houška Department / Institute: Department of Software and Computer Science Educa- tion Supervisor of the master thesis: doc. Ing. Jaroslav Křivánek, Ph.D. Abstract: This thesis investigates the use of acceleration methods for the testing of visibility in light transport calculation algorithms with the emphasis on conser- vativeness and low accelerated query overhead. Several published non-directional and directional distance field methods are presented with the description of their characteristic properties. Two of these methods are then implemented and thor- oughly tested in an existing rendering framework on a path tracing volumetric integrator as well as on an own implementation of a ray marching single scattering integrator. A method that further accelerates the original distance field methods by pre-caching results of some of the queries is also proposed, implemented and tested. Furthermore, several possible extensions to this method are outlined. Keywords: computer graphics, rendering, participating media, visibility
2

An Artistic Approach for Intuitive Control of Light Transfer in Participating Media

Guinea Montalvo, Jose 1980- 14 March 2013 (has links)
The sole purpose of every form of visual representation is to make something look believable. Even among abstract or conceptual representation, the purpose is to create something that within the defined visual language the audience will consider believable and accepted. In the field of computer generated representation there are numerous visual languages that have been developed throughout the years, attempting to solve different visualization or artistic problems. This thesis presents an alternative light transfer model for participating media focused on the intuitive control of the illumination data and the artistic value of the resulting image. The purpose is not focused on accurately modeling lights physical behavior and its interaction with the surfaces and elements. My thesis describes an artistic approach which aims to offer an organic and intuitive control of the glow and temperature of the effects of participating media and direct the value and hues through the surfaces. The system described in the thesis approximates light transfer through a given volume by calculating light contribution in the volume with discreet sampling and subsequently gathering these values to determine the diffuse scattering contribution for the volume. I will also discuss the assumptions made to allow such approximations, as well as how the intuitive control offered by the approach and these approximations allow new forms or representation and artistic direction.
3

Algorithms For Rendering Optimization

Johnson, Jared 01 January 2012 (has links)
This dissertation explores algorithms for rendering optimization realizable within a modern, complex rendering engine. The first part contains optimized rendering algorithms for ray tracing. Ray tracing algorithms typically provide properties of simplicity and robustness that are highly desirable in computer graphics. We offer several novel contributions to the problem of interactive ray tracing of complex lighting environments. We focus on the problem of maintaining interactivity as both geometric and lighting complexity grows without effecting the simplicity or robustness of ray tracing. First, we present a new algorithm called occlusion caching for accelerating the calculation of direct lighting from many light sources. We cache light visibility information sparsely across a scene. When rendering direct lighting for all pixels in a frame, we combine cached lighting information to determine whether or not shadow rays are needed. Since light visibility and scene location are highly correlated, our approach precludes the need for most shadow rays. Second, we present improvements to the irradiance caching algorithm. Here we demonstrate a new elliptical cache point spacing heuristic that reduces the number of cache points required by taking into account the direction of irradiance gradients. We also accelerate irradiance caching by efficiently and intuitively coupling it with occlusion caching. In the second part of this dissertation, we present optimizations to rendering algorithms for participating media. Specifically, we explore the implementation and use of photon beams as an efficient, intuitive artistic primitive. We detail our implementation of the photon iii beams algorithm into PhotoRealistic RenderMan (PRMan). We show how our implementation maintains the benefits of the industry standard Reyes rendering pipeline, with proper motion blur and depth of field. We detail an automatic photon beam generation algorithm, utilizing PRMan shadow maps. We accelerate the rendering of camera-facing photon beams by utilizing Gaussian quadrature for path integrals in place of ray marching. Our optimized implementation allows for incredible versatility and intuitiveness in artistic control of volumetric lighting effects. Finally, we demonstrate the usefulness of photon beams as artistic primitives by detailing their use in a feature-length animated film.
4

An Efficient Computational Method for Thermal Radiation in Participating Media

Hassanzadeh, Pedram January 2007 (has links)
Thermal radiation is of significant importance in a broad range of engineering applications including high-temperature and large-scale systems. Although the governing equations of thermal radiation have been known for many years, the complexities inherent in the phenomenon, such as the multidimensionality and integro-differential nature of these equations, have made it difficult to obtain an accurate, efficient, and robust computational method. Developing the finite volume radiation method in the 1990s was a significant progress but not a panacea for computational radiation. The major drawback of this method, which is common among all methods that solve for directional intensities, is its slow convergence rate in many situations which increases the solution cost dramatically. These situations include large optical thicknesses, strongly reflecting boundaries, and any other factor that causes strong directional coupling like complex geometries. Several acceleration schemes have been developed in the heat transfer and neutron transport communities to expedite the convergence and reduce the solution cost, but none of them led to a general and reliable method. Among these available schemes, the two most promising ones, the multiplicative scheme and coupled ordinates method, suffer from failing on fine grids and being very complicated for complex scattering phase functions, respectively. In this research, a new computational method, called the QL method, has been introduced. The main idea of this method is using the phase weight concept to relate the directional and average intensities and re-arranging the Radiative Transfer Equation to find a new expression for the radiant heat flux. This results in an elliptic-type equation for the average intensity at each control volume which conserves the radiant energy in all directions in the control volume. This formulation gives the QL method a great advantage to solve for the average intensity while including the directional effects. Since the directional effects are included and the radiant energy is conserved in each control volume, this method is expected to be accurate and have a good convergence rate in all conditions. The phase weight distribution required by the QL method can be provided by a method like the finite volume method or discrete ordinates method. The QL method is applied to several 1D and 2D test cases including isotropic and anisotropic scattering, black and partially reflecting boundaries, and emitting absorbing problems; and its accuracy, convergence rate, and solution cost are studied. The method has been found to be very stable and efficient, regardless of grid size and optical thickness. This method establishes very accurate predictions on the tested coarse grids and its results approach the exact solution with grid refinement.
5

An Efficient Computational Method for Thermal Radiation in Participating Media

Hassanzadeh, Pedram January 2007 (has links)
Thermal radiation is of significant importance in a broad range of engineering applications including high-temperature and large-scale systems. Although the governing equations of thermal radiation have been known for many years, the complexities inherent in the phenomenon, such as the multidimensionality and integro-differential nature of these equations, have made it difficult to obtain an accurate, efficient, and robust computational method. Developing the finite volume radiation method in the 1990s was a significant progress but not a panacea for computational radiation. The major drawback of this method, which is common among all methods that solve for directional intensities, is its slow convergence rate in many situations which increases the solution cost dramatically. These situations include large optical thicknesses, strongly reflecting boundaries, and any other factor that causes strong directional coupling like complex geometries. Several acceleration schemes have been developed in the heat transfer and neutron transport communities to expedite the convergence and reduce the solution cost, but none of them led to a general and reliable method. Among these available schemes, the two most promising ones, the multiplicative scheme and coupled ordinates method, suffer from failing on fine grids and being very complicated for complex scattering phase functions, respectively. In this research, a new computational method, called the QL method, has been introduced. The main idea of this method is using the phase weight concept to relate the directional and average intensities and re-arranging the Radiative Transfer Equation to find a new expression for the radiant heat flux. This results in an elliptic-type equation for the average intensity at each control volume which conserves the radiant energy in all directions in the control volume. This formulation gives the QL method a great advantage to solve for the average intensity while including the directional effects. Since the directional effects are included and the radiant energy is conserved in each control volume, this method is expected to be accurate and have a good convergence rate in all conditions. The phase weight distribution required by the QL method can be provided by a method like the finite volume method or discrete ordinates method. The QL method is applied to several 1D and 2D test cases including isotropic and anisotropic scattering, black and partially reflecting boundaries, and emitting absorbing problems; and its accuracy, convergence rate, and solution cost are studied. The method has been found to be very stable and efficient, regardless of grid size and optical thickness. This method establishes very accurate predictions on the tested coarse grids and its results approach the exact solution with grid refinement.
6

Modelagem da radiação térmica em chamas laminares da combustão de metano em ar

Mossi, Anderson Chaves January 2011 (has links)
Este trabalho analisa os efeitos da transferência de calor por radiação térmica em uma chama laminar resultante da combustão de metano com ar. No processo, são resolvidas as equações da continuidade, da quantidade de movimento, da conservação das espécies químicas e da energia. Ainda é utilizado um modelo de formação de fuligem a duas equações e o modelo de combustão de Arrhenius considerando um mecanismo com 112 reações químicas. Para avaliar os efeitos da radiação térmica, o divergente do fluxo radiante é calculado considerando quatro modelos diferentes para os gases: o modelo do gás cinza, a soma ponderada de gases cinzas, e os métodos SLW e CW. Nessa modelagem, é considerado um meio participante composto por monóxido de carbono, dióxido de carbono, vapor d’água e fuligem. No modelo do gás cinza e da soma ponderada de gases cinzas, o coeficiente de absorção da mistura é obtido por correlações que consideram a temperatura local e a concentração do meio. Nos modelos SLW e CW, o coeficiente de absorção é calculado baseado no banco de dados HITEMP. Assim, primeiramente os resultados do divergente do fluxo radiante são confrontados com os diferentes modelos considerando campos pré-estabelecidos de temperatura e concentrações da mistura de gases com a presença de fuligem e, em seguida, é feita uma análise da influência da radiação considerando uma chama difusa oriunda do processo de combustão de metano com ar. Apesar de o meio analisado ser opticamente fino, situação em que os efeitos da absorção são muito baixos, os resultados encontrados para o divergente do fluxo radiante com os modelos de radiação usados na pesquisa mostraram uma diferença média de aproximadamente 20% entre os modelos, chegando a uma diferença máxima local de mais de 50% quando foi considerado o modelo WSGG. Por outro lado, nas situações em que é considerado todo o processo de combustão, a diferença maior ocorre na comparação de casos em que a radiação térmica é negligenciada com os casos em que a radiação é considerada. Os efeitos causados entre os diferentes modelos de radiação no campo de temperaturas e concentrações dos gases foram pequenos. Assim, é observado que, mesmo em meios opticamente finos, a modelagem da radiação térmica é necessária, pois causa diferenças significativas nos resultados e que nesse tipo de meio não é necessário o uso de modelos mais sofisticados de radiação, pois os efeitos da absorção dos gases é muito pequeno. / This work analyses the effects of thermal radiation heat transfer on methane-air laminar diffusion flames. The analysis is based on the solution of the equations of continuity, fluid motion, species mass-fraction and enthalpy. The soot formation is accounted with a twoequation model while a chemistry mecanism with 112 reactions is used for the combustion of methane. To evaluate the effects of thermal radiation, the divergence of the radiative heat flux is calculated based on four different gas models: the gray gas, the weighted sum of gray gases, the SLW and the CW model. In the modeling, it is considered a participating media composed of carbon monoxide, carbon dioxide, water vapor and soot. Both in the gray gas model and in the weighted sum of gray gases model, the absorption coefficient of the mixture is obtained by correlations that depend on the local temperature and concentration of the medium. On the other hand, in the SLW and CW models, the absorption coefficient is calculated based on the HITEMP spectral database. Thus, the results of the divergence of the radiative heat flux are compared with the different gas models based on a temperature and concentration fields previously obtained, and then, the four gas models used are considered in the entire combustion process to verify the influence of the radiation heat transfer. The results obtained for the divergence of the radiative heat flux considering the four different radiation models used showed an avereged difference of 20%, with a maximum local difference of more than 50%, when the WSGG model was considered. On the other hand, in situations where the whole combustion process is considered, the major difference occurs when is compared the results obtained with a radiation model and the ones where it is neglected. The effects observed with the different radiation models in the temperature field and the gas concentrations were small. Thus is observed that, even in optically thin media, the thermal radiation gas modeling is necessary, and in this particular kind of media, the use of sofisticated gas models are not necessary, because the absorption effect fo the gases are small when compared with their emission.
7

Análise numérica de escoamentos turbulentos não reativos com transferência de calor por convecção e radiação térmica em meios participantes / Numerical analysis of non-reactive turbulent flows with convection and thermal radiation heat transfer in participanting media

Santos, Elizaldo Domingues dos January 2011 (has links)
O presente trabalho apresenta um estudo numérico sobre escoamentos turbulentos combinando os mecanismos de transferência de calor por convecção e radiação térmica em meios participantes. Os principais propósitos são obter um melhor entendimento a respeito da relevância das interações Turbulência-Radiação (TRI) em escoamentos turbulentos não reativos, bem como, investigar o efeito da radiação térmica sobre o comportamento transiente, médio e estatístico dos campos térmicos. Para investigar a relevância das interações TRI em escoamentos turbulentos internos, realiza-se uma comparação entre os fluxos temporais médios por convecção e radiação térmica obtidos através da simulação de grandes escalas (LES) e da modelagem clássica da turbulência (RANS) para escoamentos no regime permanente com as seguintes espessuras ópticas: τ0 = 0.01, 0.10, 1.0, 10.0 e 100.0, que representam desde meios opticamente muito finos até meios muito espessos. Para todos os casos, o número de Reynolds baseado na velocidade de fricção e o número de Prandtl são mantidos fixos: Reτ = 180 e Pr = 0.71. A abordagem da turbulência é realizada a partir dos modelos submalha dinâmico de Smagorinsky (DSSGS) e k – ε padrão no âmbito de LES e RANS, enquanto nenhum modelo de turbulência é utilizado para a equação da transferência radiante (RTE). Com o intuito de contornar as dificuldades relacionadas com a dependência espectral da radiação térmica, todos os meios participantes são tratados como gás cinza. Para a solução numérica das equações de conservação de massa, quantidade de movimento e energia emprega-se um código comercial (FLUENT®) baseado no método de volumes finitos (FVM). A equação da transferência radiante é resolvida pelo método de ordenadas discretas (DOM). A relevância das interações TRI também é investigada em um escoamento não reativo em cavidade cilíndrica com ReD = 22000, Pr = 0.71 e τ0 = 0.10. Além destes casos, é simulado um escoamento transiente em cavidade retangular com ReH = 10000, Pr = 0.71 e τ0 = 10 para avaliar o efeito da radiação térmica sobre o campo térmico transiente. Os resultados mostram que as interações TRI podem ser desprezadas para escoamentos não reativos para meios com espessura óptica menor ou igual a τ0 = 1.0, concordando com resultados da literatura. No entanto, para meios mais espessos as interações TRI passam a ser relevantes, ao contrário do que tem sido afirmado na literatura. / The present work presents a numerical study about turbulent flows with combined convection and thermal radiation heat transfer in participating media. The main purposes of this study are to obtain a better understanding of the relevance of Turbulence-Radiation Interactions (TRI) for non-reactive turbulent flows, as well as, the investigation of the effect of thermal radiation over the time-averaged and statistics of the thermal field for these flows. To investigate the relevance of TRI for turbulent internal flows, it is performed a comparison between the timeaveraged convective and radiative surface fluxes obtained by means of Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) for steady state flows for the following optical thickness: τ0 = 0.01, 0.10, 1.0, 10.0 and 100.0, which represents from very thin to optical very thick media. For all cases, the Reynolds number based on the velocity friction and the Prandtl number are kept fixed: Reτ = 180 and Pr = 0.71. The turbulence is tackled with the dynamic Smagorinsky subgrid-scale (DSSGS) and the standard k – ε models within the LES and RANS framework, respectively, whilst no turbulence model is used for the radiative transfer equation (RTE). For the minimization of the difficulties concerned with the spectral dependence of thermal radiation, the participating media are treated as grey gas. For the numerical solution of the conservation equations of mass, momentum and energy it is employed a commercial CFD package (FLUENT®) based on the finite volume method (FVM). The radiative transfer equation (RTE) is solved by means of the discrete ordinates method (DOM). The TRI relevance is also investigated for the simulation of a non-reactive flow in a cylindrical cavity for the following dimensionless parameters: ReD = 22000, Pr = 0.71 and τ0 = 0.10. Besides the above mentioned cases, it is simulated a transient turbulent rectangular cavity flow at ReH = 10000, Pr = 0.71 and τ0 = 10 in order to evaluate the effect of thermal radiation over the transient thermal field. The results show that TRI can be neglected for non-reactive channel flows with optical thickness lower or equal than τ0 = 1.0, which is agreement with the previous findings of literature. However, as the optical thickness increases, the TRI becomes relevant, which is in disagreement with previous statements from literature.
8

Modelagem da radiação térmica em chamas laminares da combustão de metano em ar

Mossi, Anderson Chaves January 2011 (has links)
Este trabalho analisa os efeitos da transferência de calor por radiação térmica em uma chama laminar resultante da combustão de metano com ar. No processo, são resolvidas as equações da continuidade, da quantidade de movimento, da conservação das espécies químicas e da energia. Ainda é utilizado um modelo de formação de fuligem a duas equações e o modelo de combustão de Arrhenius considerando um mecanismo com 112 reações químicas. Para avaliar os efeitos da radiação térmica, o divergente do fluxo radiante é calculado considerando quatro modelos diferentes para os gases: o modelo do gás cinza, a soma ponderada de gases cinzas, e os métodos SLW e CW. Nessa modelagem, é considerado um meio participante composto por monóxido de carbono, dióxido de carbono, vapor d’água e fuligem. No modelo do gás cinza e da soma ponderada de gases cinzas, o coeficiente de absorção da mistura é obtido por correlações que consideram a temperatura local e a concentração do meio. Nos modelos SLW e CW, o coeficiente de absorção é calculado baseado no banco de dados HITEMP. Assim, primeiramente os resultados do divergente do fluxo radiante são confrontados com os diferentes modelos considerando campos pré-estabelecidos de temperatura e concentrações da mistura de gases com a presença de fuligem e, em seguida, é feita uma análise da influência da radiação considerando uma chama difusa oriunda do processo de combustão de metano com ar. Apesar de o meio analisado ser opticamente fino, situação em que os efeitos da absorção são muito baixos, os resultados encontrados para o divergente do fluxo radiante com os modelos de radiação usados na pesquisa mostraram uma diferença média de aproximadamente 20% entre os modelos, chegando a uma diferença máxima local de mais de 50% quando foi considerado o modelo WSGG. Por outro lado, nas situações em que é considerado todo o processo de combustão, a diferença maior ocorre na comparação de casos em que a radiação térmica é negligenciada com os casos em que a radiação é considerada. Os efeitos causados entre os diferentes modelos de radiação no campo de temperaturas e concentrações dos gases foram pequenos. Assim, é observado que, mesmo em meios opticamente finos, a modelagem da radiação térmica é necessária, pois causa diferenças significativas nos resultados e que nesse tipo de meio não é necessário o uso de modelos mais sofisticados de radiação, pois os efeitos da absorção dos gases é muito pequeno. / This work analyses the effects of thermal radiation heat transfer on methane-air laminar diffusion flames. The analysis is based on the solution of the equations of continuity, fluid motion, species mass-fraction and enthalpy. The soot formation is accounted with a twoequation model while a chemistry mecanism with 112 reactions is used for the combustion of methane. To evaluate the effects of thermal radiation, the divergence of the radiative heat flux is calculated based on four different gas models: the gray gas, the weighted sum of gray gases, the SLW and the CW model. In the modeling, it is considered a participating media composed of carbon monoxide, carbon dioxide, water vapor and soot. Both in the gray gas model and in the weighted sum of gray gases model, the absorption coefficient of the mixture is obtained by correlations that depend on the local temperature and concentration of the medium. On the other hand, in the SLW and CW models, the absorption coefficient is calculated based on the HITEMP spectral database. Thus, the results of the divergence of the radiative heat flux are compared with the different gas models based on a temperature and concentration fields previously obtained, and then, the four gas models used are considered in the entire combustion process to verify the influence of the radiation heat transfer. The results obtained for the divergence of the radiative heat flux considering the four different radiation models used showed an avereged difference of 20%, with a maximum local difference of more than 50%, when the WSGG model was considered. On the other hand, in situations where the whole combustion process is considered, the major difference occurs when is compared the results obtained with a radiation model and the ones where it is neglected. The effects observed with the different radiation models in the temperature field and the gas concentrations were small. Thus is observed that, even in optically thin media, the thermal radiation gas modeling is necessary, and in this particular kind of media, the use of sofisticated gas models are not necessary, because the absorption effect fo the gases are small when compared with their emission.
9

Advances in radiation transport modeling using Lattice Boltzmann Methods

McCulloch, Richard January 1900 (has links)
Master of Science / Mechanical and Nuclear Engineering / Hitesh Bindra / This thesis extends the application of Lattice Boltzmann Methods (LBM) to radiation transport problems in thermal sciences and nuclear engineering. LBM is used to solve the linear Boltzmann transport equation through discretization into Lattice Boltzmann Equations (LBE). The application of weighted summations for the scattering integral as set forth by Bindra and Patil are used in this work. Simplicity and localized discretization are the main advantages of using LBM with fixed lattice configurations for radiation transport problems. Coupled solutions to radiation transport and material energy transport are obtained using a single framework LBM. The resulting radiation field of a one dimensional participating and conducting media are in very good agreement with benchmark results using spherical harmonics, the P₁ method. Grid convergence studies were performed for this coupled conduction-radiation problem and results are found to be first-order accurate in space. In two dimensions, angular discretization for LBM is extended to higher resolution schemes such as D₂Q₈ and a generic formulation is adopted to derive the weights for Radiation Transport Equations (RTEs). Radiation transport in a two dimensional media is solved with LBM and the results are compared to those obtained from the commercial software COMSOL, which uses the Discrete Ordinates Method (DOM) with different angular resolution schemes. Results obtained from different lattice Boltzmann configurations such as D₂Q₄ and D₂Q₈ are compared with DOM and are found to be in good agreement. The verified LBM based radiation transport models are extended for their application into coupled multi-physics problems. A porous radiative burner is modeled as a homogeneous media with an analytical velocity field. Coupling is performed between the convection-diffusion energy transport equation with the analytical velocity field. Results show that radiative transport heats the participating media prior to its entering into the combustion chamber. The limitations of homogeneous models led to the development of a fully coupled LBM multi-physics model for a heterogeneous porous media. This multi-physics code solves three physics: fluid flow, conduction-convection and radiation transport in a single framework. The LBE models in one dimension are applied to solve one-group and two-group eigenvalue problems in bare and reflected slab geometries. The results are compared with existing criticality benchmark reports for different problems. It is found that results agree with benchmark reports for thick slabs (>4 mfp) but they tend to disagree when the critical slab dimensions are less than 3 mfp. The reason for this disagreement can be attributed to having only two angular directions in the one dimensional problems.
10

Análise numérica de escoamentos turbulentos não reativos com transferência de calor por convecção e radiação térmica em meios participantes / Numerical analysis of non-reactive turbulent flows with convection and thermal radiation heat transfer in participanting media

Santos, Elizaldo Domingues dos January 2011 (has links)
O presente trabalho apresenta um estudo numérico sobre escoamentos turbulentos combinando os mecanismos de transferência de calor por convecção e radiação térmica em meios participantes. Os principais propósitos são obter um melhor entendimento a respeito da relevância das interações Turbulência-Radiação (TRI) em escoamentos turbulentos não reativos, bem como, investigar o efeito da radiação térmica sobre o comportamento transiente, médio e estatístico dos campos térmicos. Para investigar a relevância das interações TRI em escoamentos turbulentos internos, realiza-se uma comparação entre os fluxos temporais médios por convecção e radiação térmica obtidos através da simulação de grandes escalas (LES) e da modelagem clássica da turbulência (RANS) para escoamentos no regime permanente com as seguintes espessuras ópticas: τ0 = 0.01, 0.10, 1.0, 10.0 e 100.0, que representam desde meios opticamente muito finos até meios muito espessos. Para todos os casos, o número de Reynolds baseado na velocidade de fricção e o número de Prandtl são mantidos fixos: Reτ = 180 e Pr = 0.71. A abordagem da turbulência é realizada a partir dos modelos submalha dinâmico de Smagorinsky (DSSGS) e k – ε padrão no âmbito de LES e RANS, enquanto nenhum modelo de turbulência é utilizado para a equação da transferência radiante (RTE). Com o intuito de contornar as dificuldades relacionadas com a dependência espectral da radiação térmica, todos os meios participantes são tratados como gás cinza. Para a solução numérica das equações de conservação de massa, quantidade de movimento e energia emprega-se um código comercial (FLUENT®) baseado no método de volumes finitos (FVM). A equação da transferência radiante é resolvida pelo método de ordenadas discretas (DOM). A relevância das interações TRI também é investigada em um escoamento não reativo em cavidade cilíndrica com ReD = 22000, Pr = 0.71 e τ0 = 0.10. Além destes casos, é simulado um escoamento transiente em cavidade retangular com ReH = 10000, Pr = 0.71 e τ0 = 10 para avaliar o efeito da radiação térmica sobre o campo térmico transiente. Os resultados mostram que as interações TRI podem ser desprezadas para escoamentos não reativos para meios com espessura óptica menor ou igual a τ0 = 1.0, concordando com resultados da literatura. No entanto, para meios mais espessos as interações TRI passam a ser relevantes, ao contrário do que tem sido afirmado na literatura. / The present work presents a numerical study about turbulent flows with combined convection and thermal radiation heat transfer in participating media. The main purposes of this study are to obtain a better understanding of the relevance of Turbulence-Radiation Interactions (TRI) for non-reactive turbulent flows, as well as, the investigation of the effect of thermal radiation over the time-averaged and statistics of the thermal field for these flows. To investigate the relevance of TRI for turbulent internal flows, it is performed a comparison between the timeaveraged convective and radiative surface fluxes obtained by means of Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) for steady state flows for the following optical thickness: τ0 = 0.01, 0.10, 1.0, 10.0 and 100.0, which represents from very thin to optical very thick media. For all cases, the Reynolds number based on the velocity friction and the Prandtl number are kept fixed: Reτ = 180 and Pr = 0.71. The turbulence is tackled with the dynamic Smagorinsky subgrid-scale (DSSGS) and the standard k – ε models within the LES and RANS framework, respectively, whilst no turbulence model is used for the radiative transfer equation (RTE). For the minimization of the difficulties concerned with the spectral dependence of thermal radiation, the participating media are treated as grey gas. For the numerical solution of the conservation equations of mass, momentum and energy it is employed a commercial CFD package (FLUENT®) based on the finite volume method (FVM). The radiative transfer equation (RTE) is solved by means of the discrete ordinates method (DOM). The TRI relevance is also investigated for the simulation of a non-reactive flow in a cylindrical cavity for the following dimensionless parameters: ReD = 22000, Pr = 0.71 and τ0 = 0.10. Besides the above mentioned cases, it is simulated a transient turbulent rectangular cavity flow at ReH = 10000, Pr = 0.71 and τ0 = 10 in order to evaluate the effect of thermal radiation over the transient thermal field. The results show that TRI can be neglected for non-reactive channel flows with optical thickness lower or equal than τ0 = 1.0, which is agreement with the previous findings of literature. However, as the optical thickness increases, the TRI becomes relevant, which is in disagreement with previous statements from literature.

Page generated in 0.5371 seconds