• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 45
  • 45
  • 21
  • 12
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Generalized theoretical deterministic particle swarm model

Cleghorn, Christopher Wesley January 2013 (has links)
Particle swarm optimization (PSO) is a well known population-based search algorithm, originally developed by Kennedy and Eberhart in 1995. The PSO has been utilized in a variety of application domains, providing a wealth of empirical evidence for its effectiveness as an optimizer. The PSO itself has undergone many alterations subsequent to its inception, some of which are fundamental to the PSO's core behavior, others have been more application specific. The fundamental alterations to the PSO have to a large extent been a result of theoretical analysis of the PSO's particle's long term trajectory. The most obvious example, is the need for velocity clamping in the original PSO. While there were empirical fndings that suggested that each particle's velocity was increasing at a rapid rate, it was only once a solid theoretical study was performed that the reason for the velocity explosion was understood. There has been a large amount of theoretical research done on the PSO, both for the deterministic model, and more recently for the stochastic model. This thesis presents an extension to the theoretical deterministic PSO model. Under the extended model, conditions for particle convergence to a point are derived. At present all theoretical PSO research is done under the stagnation assumption, in some form or another. The analysis done under the stagnation assumption is one where the personal best and neighborhood best are assumed to be non-changing. While analysis under the stagnation assumption is very informative, it could never provide a complete description of a PSO's behavior. Furthermore, the assumption implicitly removes the notion of a social network structure from the analysis. The model used in this thesis greatly weakens the stagnation assumption, by instead assuming that each particle's personal best and neighborhood best can occupy an arbitrarily large number of unique positions. Empirical results are presented to support the theoretical fndings. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Computer Science / Unrestricted
2

An Analysis of Particle Swarm Optimizers

Van den Bergh, Frans 03 May 2006 (has links)
Many scientific, engineering and economic problems involve the optimisation of a set of parameters. These problems include examples like minimising the losses in a power grid by finding the optimal configuration of the components, or training a neural network to recognise images of people's faces. Numerous optimisation algorithms have been proposed to solve these problems, with varying degrees of success. The Particle Swarm Optimiser (PSO) is a relatively new technique that has been empirically shown to perform well on many of these optimisation problems. This thesis presents a theoretical model that can be used to describe the long-term behaviour of the algorithm. An enhanced version of the Particle Swarm Optimiser is constructed and shown to have guaranteed convergence on local minima. This algorithm is extended further, resulting in an algorithm with guaranteed convergence on global minima. A model for constructing cooperative PSO algorithms is developed, resulting in the introduction of two new PSO-based algorithms. Empirical results are presented to support the theoretical properties predicted by the various models, using synthetic benchmark functions to investigate specific properties. The various PSO-based algorithms are then applied to the task of training neural networks, corroborating the results obtained on the synthetic benchmark functions. / Thesis (PhD)--University of Pretoria, 2007. / Computer Science / Unrestricted
3

Niching strategies for particle swarm optimization

Brits, Riaan 19 February 2004 (has links)
Evolutionary algorithms and swarm intelligence techniques have been shown to successfully solve optimization problems where the goal is to find a single optimal solution. In multimodal domains where the goal is the locate multiple solutions in a single search space, these techniques fail. Niching algorithms extend existing global optimization algorithms to locate and maintain multiple solutions concurrently. In this thesis, strategies are developed that utilize the unique characteristics of the particle swarm optimization algorithm to perform niching. Shrinking topological neighborhoods and optimization with multiple subswarms are used to identify and stably maintain niches. Solving systems of equations and multimodal functions are used to demonstrate the effectiveness of the new algorithms. / Dissertation (MS)--University of Pretoria, 2005. / Computer Science / unrestricted
4

Niching in particle swarm optimization

Schoeman, Isabella Lodewina 22 July 2010 (has links)
Optimization forms an intrinsic part of the design and implementation of modern systems, such as industrial systems, communication networks, and the configuration of electric or electronic components. Population-based single-solution optimization algorithms such as Particle Swarm Optimization (PSO) have been shown to perform well when a number of optimal or suboptimal solutions exist. However, some problems require algorithms that locate all or most of these optimal and suboptimal solutions. Such algorithms are known as niching or speciation algorithms. Several techniques have been proposed to extend the PSO paradigm so that multiple optima can be located and maintained within a convoluted search space. A significant number of these implementations are subswarm-based, that is, portions of the swarm are optimized separately. Niches are formed to contain these subswarms, a process that often requires user-specified parameters, as the sizes and placing of the niches are unknown. This thesis presents a new niching technique that uses the vector dot product of the social and cognitive direction vectors to determine niche boundaries. Thus, a separate niche radius is calculated for each niche, a process that requires minimal knowledge of the search space. This strategy differs from other techniques using niche radii where a niche radius is either required to be set in advance, or calculated from the distances between particles. The development of the algorithm is traced and tested extensively using synthetic benchmark functions. Empirical results are reported using a variety of settings. An analysis of the algorithm is presented as well as a scalability study. The performance of the algorithm is also compared to that of two other well-known PSO niching algorithms. To conclude, the vector-based PSO is extended to locate and track multiple optima in dynamic environments. / Thesis (PhD)--University of Pretoria, 2010. / Computer Science / unrestricted
5

Critical analysis of angle modulated particle swarm optimisers

Leonard, Barend Jacobus January 2017 (has links)
This dissertation presents an analysis of the angle modulated particle swarm optimisation (AMPSO) algorithm. AMPSO is a technique that enables one to solve binary optimisation problems with particle swarm optimisation (PSO), without any modifications to the PSO algorithm. While AMPSO has been successfully applied to a range of optimisation problems, there is little to no understanding of how and why the algorithm might fail. The work presented here includes in-depth theoretical and emprical analyses of the AMPSO algorithm in an attempt to understand it better. Where problems are identified, they are supported by theoretical and/or empirical evidence. Furthermore, suggestions are made as to how the identified issues could be overcome. In particular, the generating function is identified as the main cause for concern. The generating function in AMPSO is responsible for generating binary solutions. However, it is shown that the increasing frequency of the generating function hinders the algorithm’s ability to effectively exploit the search space. The problem is addressed by introducing methods to construct different generating functions, and to quantify the quality of arbitrary generating functions. In addition to this, a number of other problems are identified and addressed in various ways. The work concludes with an empirical analysis that aims to identify which of the various suggestions made throughout this dissertatioin hold substantial promise for further research. / Dissertation (MSc)--University of Pretoria, 2017. / Computer Science / MSc / Unrestricted
6

The perils of particle swarm optimization in high dimensional problem spaces

Oldewage, Elre Talea January 2017 (has links)
Particle swarm optimisation (PSO) is a stochastic, population-based optimisation algorithm. PSO has been applied successfully to a variety of domains. This thesis examines the behaviour of PSO when applied to high dimensional optimisation problems. Empirical experiments are used to illustrate the problems exhibited by the swarm, namely that the particles are prone to leaving the search space and never returning. This thesis does not intend to develop a new version of PSO speci cally for high dimensional problems. Instead, the thesis investigates why PSO fails in high dimensional search spaces. Four di erent types of approaches are examined. The rst is the application of velocity clamping to prevent the initial velocity explosion and to keep particles inside the search space. The second approach selects values for the acceleration coe cients and inertia weights so that particle movement is restrained or so that the swarm follows particular patterns of movement. The third introduces coupling between problem variables, thereby reducing the swarm's movement freedom and forcing the swarm to focus more on certain subspaces within the search space. The nal approach examines the importance of initialisation strategies in controlling the swarm's exploration to exploitation ratio. The thesis shows that the problems exhibited by PSO in high dimensions, particularly unwanted particle roaming, can not be fully mitigated by any of the techniques examined. The thesis provides deeper insight into the reasons for PSO's poor performance by means of extensive empirical tests and theoretical reasoning. / Dissertation (MSc)--University of Pretoria, 2017. / Computer Science / MSc / Unrestricted
7

A study of gradient based particle swarm optimisers

Barla-Szabo, Daniel 29 November 2010 (has links)
Gradient-based optimisers are a natural way to solve optimisation problems, and have long been used for their efficacy in exploiting the search space. Particle swarm optimisers (PSOs), when using reasonable algorithm parameters, are considered to have good exploration characteristics. This thesis proposes a specific way of constructing hybrid gradient PSOs. Heterogeneous, hybrid gradient PSOs are constructed by allowing the gradient algorithm to optimise local best particles, while the PSO algorithm governs the behaviour of the rest of the swarm. This approach allows the distinct algorithms to concentrate on performing the separate tasks of exploration and exploitation. Two new PSOs, the Gradient Descent PSO, which combines the Gradient Descent and PSO algorithms, and the LeapFrog PSO, which combines the LeapFrog and PSO algorithms, are introduced. The GDPSO represents arguably the simplest hybrid gradient PSO possible, while the LeapFrog PSO incorporates the more sophisticated LFOP1(b) algorithm, exhibiting a heuristic algorithm design and dynamic time step adjustment mechanism. The strong tendency of these hybrids to prematurely converge is examined, and it is shown that by modifying algorithm parameters and delaying the introduction of gradient information, it is possible to retain strong exploration capabilities of the original PSO algorithm while also benefiting from the exploitation of the gradient algorithms. / Dissertation (MSc)--University of Pretoria, 2010. / Computer Science / unrestricted
8

Detecção automática de massas em imagens mamográficas usando particle swarm optimization (PSO) e índice de diversidade funcional

Silva Neto, Otilio Paulo da 04 March 2016 (has links)
Made available in DSpace on 2016-08-17T14:52:40Z (GMT). No. of bitstreams: 1 Dissertacao-OtilioPauloSilva.pdf: 2236988 bytes, checksum: e67439b623fd83b01f7bcce0020365fb (MD5) Previous issue date: 2016-03-04 / Breast cancer is now set on the world stage as the most common among women and the second biggest killer. It is known that diagnosed early, the chance of cure is quite significant, on the other hand, almost late discovery leads to death. Mammography is the most common test that allows early detection of cancer, this procedure can show injury in the early stages also contribute to the discovery and diagnosis of breast lesions. Systems computer aided, have been shown to be very important tools in aid to specialists in diagnosing injuries. This paper proposes a computational methodology to assist in the discovery of mass in dense and nondense breasts. This paper proposes a computational methodology to assist in the discovery of mass in dense and non-dense breasts. Divided into 6 stages, this methodology begins with the acquisition of the acquired breast image Digital Database for Screening Mammography (DDSM). Then the second phase is done preprocessing to eliminate and enhance the image structures. In the third phase is executed targeting with the Particle Swarm Optimization (PSO) to find regions of interest (ROIs) candidates for mass. The fourth stage is reduction of false positives, which is divided into two parts, reduction by distance and clustering graph, both with the aim of removing unwanted ROIs. In the fifth stage are extracted texture features using the functional diversity indicia (FD). Finally, in the sixth phase, the classifier uses support vector machine (SVM) to validate the proposed methodology. The best values found for non-dense breasts, resulted in sensitivity of 96.13%, specificity of 91.17%, accuracy of 93.52%, the taxe of false positives per image 0.64 and acurva free-response receiver operating characteristic (FROC) with 0.98. The best finds for dense breasts hurt with the sensitivity of 97.52%, specificity of 92.28%, accuracy of 94.82% a false positive rate of 0.38 per image and FROC curve 0.99. The best finds with all the dense and non dense breasts Showed 95.36% sensitivity, 89.00% specificity, 92.00% accuracy, 0.75 the rate of false positives per image and 0, 98 FROC curve. / O câncer de mama hoje é configurado no senário mundial como o mais comum entre as mulheres e o segundo que mais mata. Sabe-se que diagnosticado precocemente, a chance de cura é bem significativa, por outro lado, a descoberta tardia praticamente leva a morte. A mamografia é o exame mais comum que permite a descoberta precoce do câncer, esse procedimento consegue mostrar lesões nas fases iniciais, além de contribuir para a descoberta e o diagnóstico de lesões na mama. Sistemas auxiliados por computador, têm-se mostrado ferramentas importantíssimas, no auxilio a especialistas em diagnosticar lesões. Este trabalho propõe uma metodologia computacional para auxiliar na descoberta de massas em mamas densas e não densas. Dividida em 6 fases, esta metodologia se inicia com a aquisição da imagem da mama adquirida da Digital Database for Screening Mammography (DDSM). Em seguida, na segunda fase é feito o pré-processamento para eliminar e realçar as estruturas da imagem. Na terceira fase executa-se a segmentação com o Particle Swarm Optimization (PSO) para encontrar as regiões de interesse (ROIs) candidatas a massa. A quarta fase é a redução de falsos positivos, que se subdivide em duas partes, sendo a redução pela distância e o graph clustering, ambos com o objetivo de remover ROIs indesejadas. Na quinta fase são extraídas as características de textura utilizando os índices de diversidade funcional (FD). Por fim, na sexta fase, utiliza-se o classificador máquina de vetores de suporte (SVM) para validar a metodologia proposta. Os melhores valores achados para as mamas não densas, resultaram na sensibilidade de 96,13%, especificidade de 91,17%, acurácia de 93,52%, a taxe de falsos positivos por imagem de 0,64 e a acurva Free-response Receiver Operating Characteristic (FROC) com 0,98. Os melhores achados para as mamas densas firam com a sensibilidade de 97,52%, especificidade de 92,28%, acurácia de 94,82%, uma taxa de falsos positivos por imagem de 0,38 e a curva FROC de 0,99. Os melhores achados com todas as mamas densas e não densas, apresentaram 95,36% de sensibilidade, 89,00% de especificidade, 92,00% de acurácia, 0,75 a taxa de falsos positivos por imagem e 0,98 a curva FROC.
9

PSO-algoritmy a možnosti jejich využití v kryptoanalýze. / PSO-algorithms and possibilities for their use in cryptanalysis.

Svetlíková, Lenka January 2011 (has links)
The aim of the thesis was to investigate the usage of PSO algorithm in the area of cryptanalysis. We applied PSO to the problem of simple substitution and to DES attack. By a modified version of PSO algorithm we achieved better or comparable results as by the usage of other biologically motivated algorithms. We suggested a method how to use PSO to attack DES and we were able to break it with the knowledge of only 20 plain texts and corresponding cipher texts. We have analyzed the reasons of failure to break more than a 4 rounds of DES and provided explanation for it. At the end we described the basic principles of differential cryptanalysis for DES and presented a specific mo- dification of PSO for searching optimal differential characteristics for DES. For simple ciphers, PSO is working efficiently but for sophisticated ciphers like DES, without in- corporating deep internal knowledge about the process into the algorithm, we could not expect significant outcomes. 1
10

TOA Wireless Location Algorithm with NLOS Mitigation Based on LS-SVM in UWB Systems

Lin, Chien-hung 29 July 2008 (has links)
One of the major problems encountered in wireless location is the effect caused by non-line of sight (NLOS) propagation. When the direct path from the mobile station (MS) to base stations (BSs) is blocked by obstacles or buildings, the signal arrival times will delay. That will make the signal measurements include an error due to the excess path propagation. If we use the NLOS signal measurements for localization, that will make the system localization performance reduce greatly. In the thesis, a time-of-arrival (TOA) based location system with NLOS mitigation algorithm is proposed. The proposed method uses least squares-support vector machine (LS-SVM) with optimal parameters selection by particle swarm optimization (PSO) for establishing regression model, which is used in the estimation of propagation distances and reduction of the NLOS propagation errors. By using a weighted objective function, the estimation results of the distances are combined with suitable weight factors, which are derived from the differences between the estimated measurements and the measured measurements. By applying the optimality of the weighted objection function, the method is capable of mitigating the NLOS effects and reducing the propagation range errors. Computer simulation results in ultra-wideband (UWB) environments show that the proposed NLOS mitigation algorithm can reduce the mean and variance of the NLOS measurements efficiently. The proposed method outperforms other methods in improving localization accuracy under different NLOS conditions.

Page generated in 0.1232 seconds