• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle Swarm Optimization Algorithm for Multiuser Detection in DS-CDMA System

Fang, Ping-hau 31 July 2010 (has links)
In direct-sequence code division multiple access (DS-CDMA) systems, the heuristic optimization algorithms for multiuser detection include genetic algorithms (GA) and simulated annealing (SA) algorithm. In this thesis, we use particle swarm optimization (PSO) algorithms to solve the optimization problem of multiuser detection (MUD). PSO algorithm has several advantages, such as fast convergence, low computational complexity, and good performance in searching optimum solution. In order to enhance the performance and reduce the number of parameters, we propose two modified PSO algorithms, inertia weighting controlled PSO (W-PSO) and reduced-parameter PSO (R-PSO). From simulation results, the performance of our proposed algorithms can achieve that of optimal solution. Furthermore, our proposed algorithms have faster convergence performance and lower complexity when compared with other conventional algorithms.
2

A Dynamic Taxi Ride Sharing System Using Particle Swarm Optimization

Silwal, Shrawani 30 April 2020 (has links)
No description available.
3

COMPARING PSO-BASED CLUSTERING OVER CONTEXTUAL VECTOR EMBEDDINGS TO MODERN TOPIC MODELING

Samuel Jacob Miles (12462660) 26 April 2022 (has links)
<p>Efficient topic modeling is needed to support applications that aim at identifying main themes from a collection of documents. In this thesis, a reduced vector embedding representation and particle swarm optimization (PSO) are combined to develop a topic modeling strategy that is able to identify representative themes from a large collection of documents. Documents are encoded using a reduced, contextual vector embedding from a general-purpose pre-trained language model (sBERT). A modified PSO algorithm (pPSO) that tracks particle fitness on a dimension-by-dimension basis is then applied to these embeddings to create clusters of related documents. The proposed methodology is demonstrated on three datasets across different domains. The first dataset consists of posts from the online health forum r/Cancer. The second dataset is a collection of NY Times abstracts and is used to compare</p> <p>the proposed model to LDA. The third is a standard benchmark dataset for topic modeling which consists of a collection of messages posted to 20 different news groups. It is used to compare state-of-the-art generative document models (i.e., ETM and NVDM) to pPSO. The results show that pPSO is able to produce interpretable clusters. Moreover, pPSO is able to capture both common topics as well as emergent topics. The topic coherence of pPSO is comparable to that of ETM and its topic diversity is comparable to NVDM. The assignment parity of pPSO on a document completion task exceeded 90% for the 20News-Groups dataset. This rate drops to approximately 30% when pPSO is applied to the same Skip-Gram embedding derived from a limited, corpus specific vocabulary which is used by ETM and NVDM.</p>
4

Calibration of IDM Car Following Model with Evolutionary Algorithm

Yang, Zhimin 11 January 2024 (has links)
Car following (CF) behaviour modelling has made significant progress in both traffic engi-neering and traffic psychology during recent decades. Autonomous vehicles (AVs) have been demonstrated to optimise traffic flow and increase traffic stability. Consequently, sever-al car-following models have been proposed based on various car following criteria, leading to a range of model parameter sets. In traffic engineering, Intelligent Driving Model (IDM) are commonly used as microscopic traffic flow models to simulate a single vehicle's behav-iour on a road. Observational data can be employed to parameter calibrate IDM models, which enhances their practicality for real-world applications. As a result, the calibration of model parameters is crucial in traffic simulation research and typically involves solving an optimization problem. Within the given context, the Nelder-Mead(NM)algorithm, particle swarm optimization (PSO) algorithm and genetic algorithm (GA) are utilized in this study for parameterizing the IDM model, using abundant trajectory data from five different road conditions. The study further examines the effects of various algorithms on the IDM model in different road sections, providing useful insights for traffic simulation and optimization.:Table of Contents CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 STRUCTURE OF THE WORK 3 CHAPTER 2 BACKGROUND AND RELATED WORK 4 2.1 CAR-FOLLOWING MODELS 4 2.1.1 General Motors model and Gazis-Herman-Rothery model 5 2.1.2 Optimal velocity model and extended models 6 2.1.3 Safety distance or collision avoidance models 7 2.1.4 Physiology-psychology models 8 2.1.5 Intelligent Driver model 10 2.2 CALIBRATION OF CAR-FOLLOWING MODEL 12 2.2.1 Statistical Methods 13 2.2.2 Optimization Algorithms 14 2.3 TRAJECTORY DATA 21 2.3.1 Requirements of Experimental Data 22 2.3.2 Data Collection Techniques 22 2.3.3 Collected Experimental Data 24 CHAPTER 3 EXPERIMENTS AND RESULTS 28 3.1 CALIBRATION PROCESS 28 3.1.1 Objective Function 29 3.1.2 Errors Analysis 30 3.2 SOFTWARE AND METHODOLOGY 30 3.3 NM RESULTS 30 3.4 PSO RESULTS 37 3.4.1 PSO Calibrator 37 3.4.2 PSO Results 44 3.5 GA RESULTS 51 3.6 OPTIMIZATION PERFORMANCE ANALYSIS 58 CHAPTER 4 CONCLUSION 60 REFERENCES 62
5

Maximiza??o da penetra??o da gera??o distribu?da atrav?s do algoritmo de otimiza??o nuvem de part?culas

Pires, Bezaliel Albuquerque da Silva 03 August 2011 (has links)
Made available in DSpace on 2014-12-17T14:55:52Z (GMT). No. of bitstreams: 1 BezalielASP_DISSERT.pdf: 2307069 bytes, checksum: aa5ddc5e2ae2722d27d66e85a1e511f1 (MD5) Previous issue date: 2011-08-03 / This work develops a methodology for defining the maximum active power being injected into predefined nodes in the studied distribution networks, considering the possibility of multiple accesses of generating units. The definition of these maximum values is obtained from an optimization study, in which further losses should not exceed those of the base case, i.e., without the presence of distributed generation. The restrictions on the loading of the branches and voltages of the system are respected. To face the problem it is proposed an algorithm, which is based on the numerical method called particle swarm optimization, applied to the study of AC conventional load flow and optimal load flow for maximizing the penetration of distributed generation. Alternatively, the Newton-Raphson method was incorporated to resolution of the load flow. The computer program is performed with the SCILAB software. The proposed algorithm is tested with the data from the IEEE network with 14 nodes and from another network, this one from the Rio Grande do Norte State, at a high voltage (69 kV), with 25 nodes. The algorithm defines allowed values of nominal active power of distributed generation, in percentage terms relative to the demand of the network, from reference values / Neste trabalho, prop?e-se uma metodologia para defini??o dos valores m?ximos de pot?ncia ativa a serem injetados em barras pr?-definidas das redes de distribui??o estudadas, considerando a possibilidade de m?ltiplos acessos de unidades geradoras. A defini??o desses valores m?ximos se obt?m a partir de um estudo de otimiza??o, no qual as novas perdas n?o superam as do caso base, ou seja, sem a presen?a da gera??o distribu?da. No estudo atendem-se as restri??es de carregamentos nos ramos e tens?es do sistema. Para tratar o problema, prop?e-se um algoritmo baseado no m?todo num?rico de otimiza??o nuvem de part?culas, ou particle swarm optimization PSO, aplicado ao estudo de fluxo de carga convencional CA e ao fluxo de carga ?timo para maximiza??o da penetra??o da gera??o distribu?da. Tamb?m se incorporou o m?todo de Newton-Raphson, como alternativa, para a resolu??o do fluxo de carga. Realiza-se a programa??o computacional no software SCILAB. Testa-se o algoritmo proposto com os dados da rede IEEE-14 barras e de uma rede de distribui??o em alta tens?o (69 kV) do Estado do Rio Grande do Norte, com 25 barras. O algoritmo determina valores permitidos de pot?ncia ativa nominal de gera??o distribu?da, em termos percentuais relativos ? demanda da rede, a partir de valores de refer?ncia
6

Electrochemical model based fault diagnosis of lithium ion battery

Rahman, Md Ashiqur 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A gradient free function optimization technique, namely particle swarm optimization (PSO) algorithm, is utilized in parameter identification of the electrochemical model of a Lithium-Ion battery having a LiCoO2 chemistry. Battery electrochemical model parameters are subject to change under severe or abusive operating conditions resulting in, for example, Navy over-discharged battery, 24-hr over-discharged battery, and over-charged battery. It is important for a battery management system to have these parameters changes fully captured in a bank of battery models that can be used to monitor battery conditions in real time. In this work, PSO methodology has been used to identify four electrochemical model parameters that exhibit significant variations under severe operating conditions. The identified battery models were validated by comparing the model output voltage with the experimental output voltage for the stated operating conditions. These identified conditions of the battery were then used to monitor condition of the battery that can aid the battery management system (BMS) in improving overall performance. An adaptive estimation technique, namely multiple model adaptive estimation (MMAE) method, was implemented for this purpose. In this estimation algorithm, all the identified models were simulated for a battery current input profile extracted from the hybrid pulse power characterization (HPPC) cycle simulation of a hybrid electric vehicle (HEV). A partial differential algebraic equation (PDAE) observer was utilized to obtain the estimated voltage, which was used to generate the residuals. Analysis of these residuals through MMAE provided the probability of matching the current battery operating condition to that of one of the identified models. Simulation results show that the proposed model based method offered an accurate and effective fault diagnosis of the battery conditions. This type of fault diagnosis, which is based on the models capturing true physics of the battery electrochemistry, can lead to a more accurate and robust battery fault diagnosis and help BMS take appropriate steps to prevent battery operation in any of the stated severe or abusive conditions.
7

Optimization Algorithm Based on Novelty Search Applied to the Treatment of Uncertainty in Models

Martínez Rodríguez, David 23 December 2021 (has links)
[ES] La búsqueda novedosa es un nuevo paradigma de los algoritmos de optimización, evolucionarios y bioinspirados, que está basado en la idea de forzar la búsqueda del óptimo global en aquellas partes inexploradas del dominio de la función que no son atractivas para el algoritmo, con la intención de evitar estancamientos en óptimos locales. La búsqueda novedosa se ha aplicado al algoritmo de optimización de enjambre de partículas, obteniendo un nuevo algoritmo denominado algoritmo de enjambre novedoso (NS). NS se ha aplicado al conjunto de pruebas sintéticas CEC2005, comparando los resultados con los obtenidos por otros algoritmos del estado del arte. Los resultados muestran un mejor comportamiento de NS en funciones altamente no lineales, a cambio de un aumento en la complejidad computacional. En lo que resta de trabajo, el algoritmo NS se ha aplicado en diferentes modelos, específicamente en el diseño de un motor de combustión interna, en la estimación de demanda de energía mediante gramáticas de enjambre, en la evolución del cáncer de vejiga de un paciente concreto y en la evolución del COVID-19. Cabe remarcar que, en el estudio de los modelos de COVID-19, se ha tenido en cuenta la incertidumbre, tanto de los datos como de la evolución de la enfermedad. / [CA] La cerca nova és un nou paradigma dels algoritmes d'optimització, evolucionaris i bioinspirats, que està basat en la idea de forçar la cerca de l'òptim global en les parts inexplorades del domini de la funció que no són atractives per a l'algoritme, amb la intenció d'evitar estancaments en òptims locals. La cerca nova s'ha aplicat a l'algoritme d'optimització d'eixam de partícules, obtenint un nou algoritme denominat algoritme d'eixam nou (NS). NS s'ha aplicat al conjunt de proves sintètiques CEC2005, comparant els resultats amb els obtinguts per altres algoritmes de l'estat de l'art. Els resultats mostren un millor comportament de NS en funcions altament no lineals, a canvi d'un augment en la complexitat computacional. En el que resta de treball, l'algoritme NS s'ha aplicat en diferents models, específicament en el disseny d'un motor de combustió interna, en l'estimació de demanda d'energia mitjançant gramàtiques d'eixam, en l'evolució del càncer de bufeta d'un pacient concret i en l'evolució del COVID-19. Cal remarcar que, en l'estudi dels models de COVID-19, s'ha tingut en compte la incertesa, tant de les dades com de l'evolució de la malaltia. / [EN] Novelty Search is a recent paradigm in evolutionary and bio-inspired optimization algorithms, based on the idea of forcing to look for those unexplored parts of the domain of the function that might be unattractive for the algorithm, with the aim of avoiding stagnation in local optima. Novelty Search has been applied to the Particle Swarm Optimization algorithm, obtaining a new algorithm named Novelty Swarm (NS). NS has been applied to the CEC2005 benchmark, comparing its results with other state of the art algorithms. The results show better behaviour in high nonlinear functions at the cost of increasing the computational complexity. During the rest of the thesis, the NS algorithm has been used in different models, specifically the design of an Internal Combustion Engine, the prediction of energy demand estimation with Grammatical Swarm, the evolution of the bladder cancer of a specific patient and the evolution of COVID-19. It is also remarkable that, in the study of COVID-19 models, uncertainty of the data and the evolution of the disease has been taken in account. / Martínez Rodríguez, D. (2021). Optimization Algorithm Based on Novelty Search Applied to the Treatment of Uncertainty in Models [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/178994

Page generated in 0.1304 seconds