Spelling suggestions: "subject:"particlehole asymmetric"" "subject:"particle.one asymmetric""
1 |
O grupo de renormalização numérico e o problema de duas impurezas / Numerical renormalization group and the two-impurity problemCampo Júnior, Vivaldo Leiria 10 May 2004 (has links)
Neste trabalho é calculada a contribuição de duas impurezas magnéticas ao calor específico e à entropia de um metal através do grupo de renormalização numérico. Tal sistema físico foi descrito pelo modelo Kondo de duas impurezas, onde cada impureza é simplesmente um momento magnético associado a um spin S=1/2, e representa um elétron ocupando um orbital de uma impureza magnética adicionada ao metal não magnético.Para tornar possível o cálculo com malhas de discretização grossas, foi introduzida uma correção no processo de discretização, levando a novas expressões para as energias da banda de condução discretizada e permitindo um melhor tratamento da assimetria partícula-buraco do modelo. Tal assimetria decorre da dependência com a energia do acoplamento entre as impurezas e os elétrons de condução do metal. A utilização de malhas grossas é extremamente desejável para a diminuição do esforço computacional envolvido. / In this work the contribution of two magnetic impurities to the specific heat and the entropy of a metal through the group of numerical renormalization is calculated. Such physical system was described for the Kondo model of two impurities, where each impurity is simply an associated magnetic moment to one spin S=1/2, and represents an electron occupying a orbital one of a magnetic impurity added to the magnetic metal. To not become possible the calculation with thick meshes of discretization, was introduced a correction in the discretization process, having led the new expressions for the energies of the band of discredited conduction and allowing to one better treatment of the asymmetry particle-hole of the model. Such asymmetry elapses of the dependence with the energy of the coupling between the impurities and electrons of conduction of the metal. The use of thick meshes is extremely desirable for the reduction of the involved computational effort.
|
2 |
The Effects of Electronic Doping on Quantum Materials: Cuprates and GrapheneLeBlanc, James Patrick Francis 04 May 2012 (has links)
In recent years there has been significant work aimed at understanding what effect the variation of electronic doping has on material properties.
In the high transition-temperature (high-T$_c$) cuprate superconductors hole doping has an impact on the superconducting transition temperature. In the underdoped regime, the cuprates exhibit anomalous properties due to a pseudogap which forms and is thought to be related to Mott insulating physics.
While there is no general consensus as to the mechanism underlying high temperature superconductivity, the resonating valence bond (RVB) theory proposed by Anderson in 1987 with a Gutzwiller projected d-wave BCS wave function could give a first picture of the high-T$_c$ cuprates.
We have calculated properties of the cuprates using the assumption that the pseudogap state acts as a normal state to an otherwise standard BCS mean field theory. We find that the phenomenological RVB spin liquid model proposed by Yang, Rice and Zhang (YRZ) is highly successful at describing the doping dependent features of the cuprates. Through application of the YRZ model and the tools of many-body theory we present results on anomalous properties observed in: electronic specific heat; Raman and angle-resolved photoemission spectroscopy (ARPES) data; effective mass renormalization; and thermal broadening seen in ARPES.
We verify that the YRZ ansatz qualitatively describes these anomalies along with their doping dependent variations. We conclude from this work that the physics underlying the pseudogap, while distinct in origin from superconductivity, is likely to arise from an RVB wavefunction that is closely related to the BCS state.
In graphene, variation in doping modifies the polarization function which describes a screened electron-electron interaction. This leads to additional features in the spectral function which are due to electron-plasmon coupling. In this work, we calculated the electronic density of states including this interaction along with its doping dependence with and without an electron-phonon interaction. We find clear features of electron-electron interactions in the density of states. These features are related to the energies of plasmaron bands in the spectral function and can be modified through doping so as to be distinct from the phonon energy scales.
|
3 |
O grupo de renormalização numérico e o problema de duas impurezas / Numerical renormalization group and the two-impurity problemVivaldo Leiria Campo Júnior 10 May 2004 (has links)
Neste trabalho é calculada a contribuição de duas impurezas magnéticas ao calor específico e à entropia de um metal através do grupo de renormalização numérico. Tal sistema físico foi descrito pelo modelo Kondo de duas impurezas, onde cada impureza é simplesmente um momento magnético associado a um spin S=1/2, e representa um elétron ocupando um orbital de uma impureza magnética adicionada ao metal não magnético.Para tornar possível o cálculo com malhas de discretização grossas, foi introduzida uma correção no processo de discretização, levando a novas expressões para as energias da banda de condução discretizada e permitindo um melhor tratamento da assimetria partícula-buraco do modelo. Tal assimetria decorre da dependência com a energia do acoplamento entre as impurezas e os elétrons de condução do metal. A utilização de malhas grossas é extremamente desejável para a diminuição do esforço computacional envolvido. / In this work the contribution of two magnetic impurities to the specific heat and the entropy of a metal through the group of numerical renormalization is calculated. Such physical system was described for the Kondo model of two impurities, where each impurity is simply an associated magnetic moment to one spin S=1/2, and represents an electron occupying a orbital one of a magnetic impurity added to the magnetic metal. To not become possible the calculation with thick meshes of discretization, was introduced a correction in the discretization process, having led the new expressions for the energies of the band of discredited conduction and allowing to one better treatment of the asymmetry particle-hole of the model. Such asymmetry elapses of the dependence with the energy of the coupling between the impurities and electrons of conduction of the metal. The use of thick meshes is extremely desirable for the reduction of the involved computational effort.
|
Page generated in 0.059 seconds