• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 9
  • 9
  • 9
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SPATIAL REASONING AND UNDERSTANDING THE PARTICULATE NATURE OF MATTER: A MIDDLE SCHOOL PERSPECTIVE

Cole, Merryn L. 01 January 2017 (has links)
This dissertation employed a mixed-methods approach to examine the relationship between spatial reasoning ability and understanding of chemistry content for both middle school students and their science teachers. Spatial reasoning has been linked to success in learning STEM subjects (Wai, Lubinski, & Benbow, 2009). Previous studies have shown a correlation between understanding of chemistry content and spatial reasoning ability (e.g., Pribyl & Bodner, 1987; Wu & Shah, 2003: Stieff, 2013), raising the importance of developing the spatial reasoning ability of both teachers and students. Few studies examine middle school students’ or in-service middle school teachers’ understanding of chemistry concepts or its relation to spatial reasoning ability. The first paper in this dissertation addresses the quantitative relationship between mental rotation, a type of spatial reasoning ability, and understanding a fundamental concept in chemistry, the particulate nature of matter. The data showed a significant, positive correlation between scores on the Purdue Spatial Visualization Test of Rotations (PSVT; Bodner & Guay, 1997) and the Particulate Nature of Matter Assessment (ParNoMA; Yezierski, 2003) for middle school students prior to and after chemistry instruction. A significant difference in spatial ability among students choosing different answer choices on ParNoMA questions was also found. The second paper examined the ways in which students of different spatial abilities talked about matter and chemicals differently. Students with higher spatial ability tended to provide more of an explanation, though not necessarily in an articulate matter. In contrast, lower spatial ability students tended to use any keywords that seemed relevant, but provided little or no explanation. The third paper examined the relationship between mental reasoning and understanding chemistry for middle school science teachers. Similar to their students, a significant, positive correlation between scores on the PSVT and the ParNoMA was observed. Teachers who used consistent reasoning in providing definitions and examples for matter and chemistry tended to have higher spatial abilities than those teachers who used inconsistent reasoning on the same questions. This is the first study to explore the relationship between spatial reasoning and understanding of chemistry concepts at the middle school level. Though we are unable to infer cause and effect relationship from correlational data, these results illustrate a need to further investigate this relationship as well as identify the relationship between different spatial abilities (not just mental rotation) and other chemistry concepts.
2

Investigating the effect of an intervention on novice science teachers topic specific pedagogical content knowledge.

Pitjeng, Ramatsobane Judith 19 May 2015 (has links)
The lack of teaching experience in uncertified teachers leaves them with little or no understanding of the transformation of Content Knowledge (CK) at their disposal. This transformation of CK is termed Pedagogical Content Knowledge (PCK) and it is known to develop through practice. Therefore, reflective analysis of lessons taught by these teachers is important. Research has also shown that they are often not supported as they embark on their teaching career. Therefore, the study investigated the influence of an intervention on novice unqualified graduate teachers’ (NUGTs) Topic Specific Pedagogical Content Knowledge within a specific topic – the particulate nature of matter. The construct, Topic Specific PCK was the theoretical framework of my study and it consists of five topic specific categories that collectively enable transformation of content knowledge. The categories are: (1) learner prior knowledge (2) curricular Saliency (3) what is difficult to teach (4) representations and (5) conceptual teaching strategies. For measuring the quality of Topic Specific PCK, a new tool based on the topic of the particulate nature of matter was developed. The Topic Specific PCK tool was then validated using a group of 11 practising science teachers. The tool was scored using a rubric that is in line with the five categories, which are rated on a four point scale, where 1 stands for limited PCK and 4 is exemplary PCK. The research design followed in my study was mixed-methods research (MM). The study involved 16 novice teachers recruited by Teach South Africa working together with the Department of Education. The teachers hold university degrees, have done chemistry for a minimum of one year during the course of their degree and have no teaching qualifications. Four of the teachers who taught the particulate nature of matter were selected as case study teachers. Data was collected through a number of tools, including the newly designed Topic Specific PCK test on particulate nature of matter, a CK test and Content Representations (CoRes) which were all adapted from existing tools and thus considered validated. The case study teachers were observed while teaching particulate nature of matter and their lessons were analysed. All the teachers were tested before and after the professional development intervention (PDI). The findings show that the quality of Topic Specific PCK and CK in particulate nature of matter was improved in all NUGTs. The greatest improvement was observed in the NUGTs who taught the topic directly. This improvement was attributed to the experience of teaching the topic directly or teaching related concepts that need understanding of it. The improvement was observed in all the NUGTs, showing the effect of indirect experience. This can be deduced from their improved CoRe which forced the NUGTs to engage with the construct and also through the positive significant improvement in CK and Topic Specific PCK results. Finally, I suggest that although interventions like PDI have the potential to produce science teachers, care should be exercised in making assumptions about their CK and knowledge for teaching, and training programmes need to pay attention to both CK and Topic Specific PCK.
3

Relationships between models used for teaching chemistry and those expressed by students

Adbo, Karina January 2012 (has links)
This thesis is focused upon chemistry as a school subject and students' interpretations and use of formally introduced teaching models. To explore students' developing repertoire of chemical models, a longitudinal interview study was undertaken spanning the first year of upper secondary school chemistry. Matter in its different states was selected as the target framework for this study. The results presented are derived from both generalisations of groups of students as well as a case study describing an individual learner's interpretation of formal content. The results obtained demonstrated that the formal teaching models provided to the students included in this study were not sufficient to afford them a coherent framework of matter in its different states or for chemical bonding. Instead, students' expressed models of matter and phase change were to a high degree dependent on electron movement (Paper I), anthropomorphism (Paper II) and, for one student, a mechanistic approach based on small particles and gravitation (Paper III). The results from this study place focus on the importance of learners' prior learning (previous experiences) and the need to develop a coherent framework of formal teaching models for the nature of matter and phase change.
4

Particulate nature of matter, self-efficacy, and pedagogical content knowledge case studies in inquiry /

Nafziger, Kathryn Marie. January 2008 (has links)
Thesis (M.S.)--Miami University, Dept. of Chemistry and Biochemistry, 2008. / Title from first page of PDF document. Includes bibliographical references (p. 115-118).
5

Particulate Nature of Matter, Self-Efficacy, and Pedagogical Content Knowledge: Case Studies in Inquiry

Nafziger, Kathryn M. 12 August 2008 (has links)
No description available.
6

Promoting high school students' conceptual understandings of the particulate nature of matter through multiple representations

Adadan, Emine 28 November 2006 (has links)
No description available.
7

Teaching Strategies for Using Projected Images to Develop Conceptual Understanding: Exploring Discussion Practices in Computer Simulation and Static Image-Based Lessons

Price, Norman Tinkham 01 May 2013 (has links)
The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active thinking. This mixed methods study analyzes teacher behavior in lessons using visual media about the particulate model of matter that were taught by three experienced middle school teachers. Each teacher taught one half of their students with lessons using static overheads and taught the other half with lessons using a projected dynamic simulation. The quantitative analysis of pre-post data found significant gain differences between the two image mode conditions, suggesting that the students who were assigned to the simulation condition learned more than students who were assigned to the overhead condition. Open coding was used to identify a set of eight image-based teaching strategies that teachers were using with visual displays. Fixed codes for this set of image-based discussion strategies were then developed and used to analyze video and transcripts of whole class discussions from 12 lessons. The image-based discussion strategies were refined over time in a set of three in-depth 2x2 comparative case studies of two teachers teaching one lesson topic with two image display modes. The comparative case study data suggest that the simulation mode may have offered greater affordances than the overhead mode for planning and enacting discussions. The 12 discussions were also coded for overall teacher student interaction patterns, such as presentation, IRE, and IRF. When teachers moved during a lesson from using no image to using either image mode, some teachers were observed asking more questions when the image was displayed while others asked many fewer questions. The changes in teacher student interaction patterns suggest that teachers vary on whether they consider the displayed image as a "tool-for-telling" and a "tool-for-asking." The study attempts to provide new descriptions of strategies teachers use to orchestrate image-based discussions designed to promote student engagement and reasoning in lessons with conceptual goals.
8

Grade 10 physical science students' reasoning about basic chemical phenomena at submicroscopic level

Nyanhi, Musekiwa Gift 10 1900 (has links)
The study investigated South African Grade 10 Physical science learners’ reasoning about basic chemical phenomena at sub-microscopic level. The study adopted a non-experimental, exploratory and descriptive method and was principally guided by the ex-post facto research design using a concurrent embedded strategy of mixed qualitative and qualitative approach. A total of 280 grade 10 physical science learners in their intact classes and six of their teachers participated in the study. The 280 physical science learners comprised of 100 students from two top performing schools, 100 learners from two middle performing schools and the last 80 learners were drawn from two poor performing schools in Gauteng Department of Education’s Tshwane North District. A two-tier multiple-choice paper and pencil Test of Basic Chemistry Knowledge (TBCK) based on the three levels of chemical representation of matter was administered to the 280 physical science learners in their Grade 11 first term to collect both quantitative and qualitative data. In addition to the TBCK, focus group discussions (FGDs) with learners, teacher interviews and document analysis were used to triangulate data. The results revealed that most Grade 10 learners find it easy to identify pure elements and the solid state but find it difficult to negotiate between the three levels (macroscopic, sub-microscopic and symbolic) of chemical representation of matter. It became clear that learners experienced more difficulties in the concepts of basic solutions, acidic solutions, concentration and ionic compounds in solution. It also became apparent that some learners could not tell differences between a diatomic element and a compound indicating conceptual problems when they reason at particle level, and as a result they could not identify a mixture of elements. The results also indicated that the concepts of pure compounds and mixtures of compounds were not easy to comprehend as most learners took a pure compound for a mixture of atoms and a mixture of compounds for a mixture of elements. It is therefore concluded that learners find it difficult negotiating the three levels of chemical representation of matter. However, it is not clear whether the misconceptions the learners showed could be completely attributable to the concepts involved or the nature of the sub-microscopic models that were used in the test as it was also revealed that most teachers were not using sub-microscopic representations during instruction to enable learners to think at particle level. Furthermore, justifications to the multiple-choice tasks revealed lack of understanding of basic chemical concepts as well as language problems amongst learners as they could not clearly express their reasoning. Based on the results, some recommendations to educators, chemistry curriculum planners, teacher education and the chemistry education research field are suggested. / Science and Technology Education / D. Phil. ((Philosophy in Mathematics, Science and Technology Education)
9

Grade 10 physical science students' reasoning about basic chemical phenomena at submicroscopic level

Nyanhi, Musekiwa Gift 10 1900 (has links)
The study investigated South African Grade 10 Physical science learners’ reasoning about basic chemical phenomena at sub-microscopic level. The study adopted a non-experimental, exploratory and descriptive method and was principally guided by the ex-post facto research design using a concurrent embedded strategy of mixed qualitative and qualitative approach. A total of 280 grade 10 physical science learners in their intact classes and six of their teachers participated in the study. The 280 physical science learners comprised of 100 students from two top performing schools, 100 learners from two middle performing schools and the last 80 learners were drawn from two poor performing schools in Gauteng Department of Education’s Tshwane North District. A two-tier multiple-choice paper and pencil Test of Basic Chemistry Knowledge (TBCK) based on the three levels of chemical representation of matter was administered to the 280 physical science learners in their Grade 11 first term to collect both quantitative and qualitative data. In addition to the TBCK, focus group discussions (FGDs) with learners, teacher interviews and document analysis were used to triangulate data. The results revealed that most Grade 10 learners find it easy to identify pure elements and the solid state but find it difficult to negotiate between the three levels (macroscopic, sub-microscopic and symbolic) of chemical representation of matter. It became clear that learners experienced more difficulties in the concepts of basic solutions, acidic solutions, concentration and ionic compounds in solution. It also became apparent that some learners could not tell differences between a diatomic element and a compound indicating conceptual problems when they reason at particle level, and as a result they could not identify a mixture of elements. The results also indicated that the concepts of pure compounds and mixtures of compounds were not easy to comprehend as most learners took a pure compound for a mixture of atoms and a mixture of compounds for a mixture of elements. It is therefore concluded that learners find it difficult negotiating the three levels of chemical representation of matter. However, it is not clear whether the misconceptions the learners showed could be completely attributable to the concepts involved or the nature of the sub-microscopic models that were used in the test as it was also revealed that most teachers were not using sub-microscopic representations during instruction to enable learners to think at particle level. Furthermore, justifications to the multiple-choice tasks revealed lack of understanding of basic chemical concepts as well as language problems amongst learners as they could not clearly express their reasoning. Based on the results, some recommendations to educators, chemistry curriculum planners, teacher education and the chemistry education research field are suggested. / Science and Technology Education / D. Phil. ((Philosophy in Mathematics, Science and Technology Education)

Page generated in 0.1277 seconds