• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bubble Driven Arrayed Actuator Device for a Tactile Display

Ukai, S., Imamura, T., Shikida, M., Sato, K. January 2007 (has links)
No description available.
2

The fabrication of integrated strain sensors for 'smart' implants using a direct write additive manufacturing approach

Wei, Li-Ju January 2015 (has links)
Over the 1980’s, the introduction of Additive Manufacturing (AM) technologies has provided alternative methods for the fabrication of complex three-dimensional (3D) synthetic bone tissue implant scaffolds. However, implants are still unable to provide post surgery feedback. Implants often loosen due to mismatched mechanical properties of implant material and host bone. The aim of this PhD research is to fabricate an integrated strain gauge that is able to monitor implant strain for diagnosis of the bone healing process. The research work presents a method of fabricating electrical resistance strain gauge sensors using rapid and mask-less process by experimental development (design of experiment) using the nScrypt 3Dn-300 micro dispensing direct write (MDDW) system. Silver and carbon electrical resistance strain gauges were fabricated and characterised. Carbon resistive strain gauges with gauge factor values greater than 16 were measured using a proven cantilever bending arrangement. This represented a seven to eight fold increase in sensitivity over commercial gauges that would be glued to the implant materials. The strain sensor fabrication process was specifically developed for directly fabricating resistive strain sensor structures on synthetic bone implant surface (ceramic and titanium) without the use of glue and to provide feedback for medical diagnosis. The reported novel approach employed a biocompatible parylene C as a dielectric layer between the electric conductive titanium and the strain gauge. Work also showed that parylene C could be used as an encapsulation material over strain gauges fabricated on ceramic without modifying the performance of the strain gauge. It was found that the strain gauges fabricated on titanium had a gauge factor of 10.0±0.7 with a near linear response to a maximum of 200 micro strain applied. In addition, the encapsulated ceramic strain gauge produced a gauge factor of 9.8±0.6. Both reported strain gauges had a much greater sensitivity than that of standard commercially available resistive strain gauges.
3

Parylene-C Neural Probes with Nanolaminate-sealed and Protruding Electrodes, and In Situ Microactuation

Ong, Xiao Chuan 01 December 2017 (has links)
Neural probes are a promising tool in understanding the brain, alleviating symptoms of various diseases like Parkinson’s Disease and allowing for applications like controlling prosthetics directly using the mind. However, current probes suffer from deleterious glial tissue buildup, poor insulation and low electrode yield. In this work, to improve upon current probes, ultra-compliant probes are fabricated and integrated with biodissolvable needles. Mechanically compliant probes allow for reduction in the body’s immune response chronically whereas biodissolvable needles provide sufficient stiffness during insertion. To achieve this, contributions are made in the categories of probe design concepts, device level processes, and processes in support of final probe assembly. Major contributions include incorporation of interleaved atomic layer deposited ceramics to create hybrid materials that provide better insulation properties, reducing the distance between the electrode and the site-of-interest by developing a gray scale lithography based technique to fabricate protruding electrodes and creating probes that improve electrode yield by integrating liquid crystal polymers into the parylene-C probe structure, which allows the parylene-C probe to actuate. To allow for integration of the biodissolvable needle with the probe, a peel-based process is developed that controls the adhesion between parylene-C to Si using different HMDS conditions and a transfer based process is developed that enables hightemperature annealing. In addition, a generalized design of neural probes using meandering interconnect structures is developed, allowing for rapid mechanical design of probes. This is key for neural probes because of the application specific nature of neural probe design.
4

Simulation of a Capacitive Micromachined Ultrasonic Transducer with a Parylene Membrane and Graphene Electrodes

Sadat, David 01 January 2012 (has links)
Medical ultrasound technology accounts for over half of all imaging tests performed worldwide. In comparison to other methods, ultrasonic imaging is more portable and lower cost, and is becoming more accessible to remote regions where traditionally no medical imaging can be done. However, conventional ultrasonic imaging systems still rely on expensive PZT-based ultrasound probes that limit broader applications. In addition, the resolution of PZT based transducers is low due to the limitation in hand-fabrication methods of the piezoelectric ceramics. Capacitive Micromachined Ultrasonic Transducers (CMUTs) appears as an alternative to the piezoelectric (PZT) ceramic based transducer for ultrasound medical imaging. CMUTs show better ultrasound transducer design for batch fabrication, higher axial resolution of images, lower fabrication costs of the elements, ease of fabricating large arrays of cells using MEMS fabrication, and the extremely important potential to monolithically integrate the 2D transducer arrays directly with IC circuits for real-time 3D imaging. Currently most efforts on CMUTs are silicon based. Problems with current silicon-based CMUT designs include low pressure transmission and high-temperature fabrication processes. The pressure output from the silicon based CMUTs cells during transmission are too low when compared to commercially available PZT transducers, resulting in relatively blurry ultrasound images. The fabrication of the silicon-based cells, although easier than PZT transducers, still suffers from inevitable high temperature process and require specialized and expensive equipment. Manufacturing at an elevated temperature hinders the capability of fabricating front end analog processing IC circuits, thus it is difficult to achieve true 3D/4D imaging. Therefore novel low temperature fabrication with a low cost nature is needed. A polymer (Parylene) based CMUTs transducer has been investigated recently at UCF and aims to overcome limitations posted from the silicon based counterparts. This thesis describes the numerical simulation work and proposed fabrication steps of the Parylene based CMUT. The issue of transducer cost and pressure transmission is addressed by proposing the use of low cost and low temperature Chemical Vapor Deposition (CVD) fabrication of Parylene-C as the structural membrane plus graphene for the membrane electrodes. This study focuses mainly on comparing traditional silicon-based CMUT designs against the Parylene-C/Graphene CMUT based transducer, by using MEMS modules in COMSOL. For a fair comparison, single CMUT cells are modeled and held at a constant diameter and the similar operational frequency at the structural center. The numerical CMUT model is characterized for: collapse voltage, membrane deflection profile, center frequency, peak output pressure transmission over the membrane surface, and the sensitivity to the change in electrode surface charge. This study took the unique approaches in defining sensitivity of the CMUT by calculating the membrane response and the change in the electrode surface charge due to an incoming pressure wave. Optimal design has been achieved based on the simulation results. In comparison to silicon based CMUTs, the Parylene/Graphene based CMUT transducer produces 55% more in volume displacement and more than 35% in pressure output. The thesis has also laid out the detailed fabrication processes of the Parylene/Graphene based CMUT transducers. Parylene/Graphene based ultrasonic transducers can find wide applications in both medical imaging and Non destructive evaluation (NDE).
5

Design And Implementation Of Low Leakage Mems Microvalves

Yildirim, Ender 01 September 2011 (has links) (PDF)
This thesis presents analysis, design, implementation, and testing of electrostatically actuated MEMS microvalves. The microvalves are specifically designed for lab-on-a-chip applications to achieve leakage ratios below 0.1 at pressure levels in the order of 101 kPa. For this purpose, two different microvalves are presented in the study. In the proposed designs, electrostatic actuation scheme is utilized to operate the microvalves in normally open and normally closed modes. Characterization of normally open microvalves show that, microvalves with radii ranging between 250
6

Návrh, výroba a testování grafenových biosenzorů / Design, fabrication and testing of graphene biosensors

Tripský, Andrej January 2020 (has links)
Pokrok ve vývoji nanotechnologií nám poskytuje dobrou příležitost k vývoji nových špičkových zařízení. Tato práce si klade za cíl vyrobit, popsat a změřit grafenové pH senzory na dvou různých substrátech - polymeru parylenu C a SiO2. Tento pH senzor je prvním krokem ve vývoji nositelné náplasti monitorující stav kůže a možné infekce. Grafen je 2D materiál na bázi uhlíku se zajímavými vlastnosti a nadějnými aplikacemi. Úspěšně jsme provedli dva různé experimenty sloužící k charakterizaci grafenových senzorů a jejich odezvu na různé hodnoty pH. V prvním experimentu jsme použili horní elektrolytické hradlo k určení bodu neutrality (Diracův bod). Druhý experiment popsal změnu rezistence grafenu jako funkce pH. Dále jsme také funkcionalizovali grafen polyanilinem, abychom zlepšili jeho vlastnosti. Prokázali jsme citlivost grafenových senzorů na pH pro oba substráty a objevili jsme několik výzev jako potřebu kontroly iontové síly, experimentů samotných a destrukce grafenu.
7

Improvement of the substrate layer in a photovoltaic system for neural implants

Venckute Larsson, Justina January 2022 (has links)
Neural implants have been developed to aid with different neurological disorders. Although there are neural implants that are used to treat patients today, there is still room for improvement in the field. The material used in neuroprosthetics is of particular importance and could lead to problems, if the material stiffness does not match the one of the tissue. Hence, soft and flexible implants are important to decrease the discrepancy between the tissue and the implants. Different materials have been used as substrates to make the implants soft, some materials are even biodegradable. Further, the design of the implants is also of importance to make the devices flexible. In this thesis, optimisation of the substrate layer for a photovoltaic cortical implant was performed. The degradation of PLGA as a potential material used as a substrate layer, was investigated. Moreover, for improvement of the design Parylene C was used. Mechanical and electrical tests were done to investigate how the manipulation of the devices affects their performance. The results showed that the degradation of PLGA started after 600 h. Further, the best shape and the width of the bridges, that was the Parylene C strips connecting the photovoltaic cells were chosen, as well as the thickness of Parylene C. The mechanical and electrical results indicated that the number of cycles does not affect the material performance as much, where the highest number. of cycles was 10000 cycles. As compared to the effect of the manual handling of the devices. / Neurala implantat har utvecklats för att hjälpa till vid olika neurologiska sjukdomar. Även om neurala implantat används för att behandla patienter i dag finns det fortfarande utrymme för förbättringar på detta område. Materialet som används i neuroproteser är särskilt viktigt och kan leda till problem om materialets styvhet inte motsvarar vävnadens styvhet. Därför är mjuka och flexibla implantat viktiga för att minska klyftan mellan vävnaden och implantaten. Olika material har använts som substrat för att göra mjuka implantat, vissa material är till och med biologiskt nedbrytbara. Dessutom, är implantatens design också viktig för att göra enheterna flexibla. I den här rapporten optimerades substratskiktet för ett solcells kortikalimplantat. Nedbrytningen av PLGA som ett potentiellt material som kan användas som substratskikt undersöktes. Dessutom användes Parylen C för optimering av konstruktionen. Mekaniska och elektriska tester utfördes för att undersöka hur manipuleringen av enheterna påverkar deras prestanda. Resultaten visade att nedbrytningen av PLGA började efter 600 h. Vidare valdes den bästa formen och bredden på broarna, dvs. de Parylen C-remsor som förbinder solcellerna, samt tjockleken på Parylen C. De mekaniska och elektriska resultaten visade att antalet cykler inte påverkar materialets prestanda särskilt mycket, med det högsta antalet cykler på 10 000 cykler. Jämfört med effekten av den manuella hanteringen av enheterna.
8

Mikrostruktury mimikující povrch tlapky gekona / Gecko mimicking surfaces

Fecko, Peter January 2019 (has links)
Adhezní schopnosti gekona byly předmětem mnoha studií a inspirací pro vytvoření mnoha napodobenin. Tato práce navrhuje vlastní verzi umělých gekoních struktur ve tvaru mikroskopických pilířů, které by vykazovaly adhezní vlastnosti srovnatelné s tlapkou gekona. Vyrobeny byli struktury z polymeru Parylen C pomocí fotolitografie a technik na leptání křemíku. Dalším cílem bylo různými metodami pro modifikaci povrchu a charakterizaci vytvořených struktur, které určí adhezní síly těchto povrchů, před a po modifikacích.

Page generated in 0.0516 seconds