• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 138
  • 21
  • 18
  • 15
  • 12
  • 9
  • 8
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 292
  • 139
  • 37
  • 35
  • 30
  • 30
  • 26
  • 25
  • 23
  • 23
  • 22
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A Java Founded LOIS-framework and the Message Passing Interface? : An Exploratory Case Study

Strand, Christian January 2006 (has links)
<p>In this thesis project we have successfully added an MPI extension layer to the LOIS framework. The framework defines an infrastructure for executing and connecting continuous stream processing applications. The MPI extension provides the same amount of stream based data as the framework’s original transport. We assert that an MPI-2 compatible implementation can be a candidate to extend the given framework with an adaptive and flexible communication sub-system. Adaptability is required since the communication subsystem has to be resilient to changes, either due to optimizations or system requirements.</p>
162

Graphical models and message passing receivers for interference limited communication systems

Nassar, Marcel 15 October 2013 (has links)
In many modern wireless and wireline communication networks, the interference power from other communication and non-communication devices is increasingly dominating the background noise power, leading to interference limited communication systems. Conventional communication systems have been designed under the assumption that noise in the system can be modeled as additive white Gaussian noise (AWGN). While appropriate for thermal noise, the AWGN model does not always capture the interference statistics in modern communication systems. Interference from uncoordinated users and sources is particularly harmful to communication performance because it cannot be mitigated by current interference management techniques. Based on previous statistical-physical models for uncoordinated wireless interference, this dissertation derives similar models for uncoordinated interference in PLC networks. The dissertation then extends these models for wireless and powerline interference to include temporal dependence among amplitude samples. The extensions are validated with measured data. The rest of this dissertation utilizes the proposed models to design receivers in interference limited environments. Prior designs generally adopt suboptimal approaches and often ignore the problem of channel estimation which limits their applicability in practical systems. This dissertation uses the graphical model representation of the OFDM system to propose low-complexity message passing OFDM receivers that leverage recent results in soft-input soft-output decoding, approximate message passing, and sparse signal recovery for joint channel/interference estimation and data decoding. The resulting receivers provide huge improvements in communication performance (more than 10dB) over the conventional receivers at a comparable computational complexity. Finally, this dissertation addresses the design of robust receivers that can be deployed in rapidly varying environments where the interference statistics are constantly changing. / text
163

On a class of distributed algorithms over networks and graphs

Lee, Sang Hyun, 1977- 01 June 2011 (has links)
Distributed iterative algorithms are of great importance, as they are known to provide low-complexity and approximate solutions to what are otherwise high-dimensional intractable optimization problems. The theory of message-passing based algorithms is fairly well developed in the coding, machine learning and statistical physics literatures. Even though several applications of message-passing algorithms have already been identified, this work aims at establishing that a plethora of other applications exist where it can be of great importance. In particular, the goal of this work is to develop and demonstrate applications of this class of algorithms in network communications and computational biology. In the domain of communications, message-passing based algorithms provide distributed ways of inferring the optimal solution without the aid of a central agent for various optimization problems that happen in the resource allocation of communication networks. Our main framework is Affinity Propagation (AP), originally developed for clustering problems. We reinterpret this framework to unify the development of distributed algorithms for discrete resource allocation problems. Also, we consider a network-coded communication network, where continuous rate allocation is studied. We formulate an optimization problem with a linear cost function, and then utilize a Belief Propagation (BP) approach to determine a decentralized rate allocation strategy. Next, we move to the domain of computational biology, where graphical representations and computational biology play a major role. First, we consider the motif finding problem with several DNA sequences. In effect, this is a sequence matching problem, which can be modeled using various graphical representations and also solved using low-complexity algorithms based on message-passing techniques. In addition, we address the application of message-passing algorithms for a DNA sequencing problem where the one dimensional structure of a single DNA sequence is identified. We reinterpret the problem as being equivalent to the decoding of a nonlinear code. Based on the iterative decoding framework, we develop an appropriate graphical model which enables us to derive a message-passing algorithm to improve the performance of the DNA sequencing problem. Although this work consists of disparate application domains of communications, networks and computational biology, graphical models and distributed message-passing algorithms form a common underlying theme. / text
164

Impression management in computer-mediated communication : an exploratory qualitative analysis

Becker, Jennifer A. January 1999 (has links)
This study investigates the phenomenon of impression management in computer-mediated communication (CMC), particularly chat rooms. Past research has overlooked the occurrence of this phenomenon; however, connections can be drawn from the body of research on impression management in face-to-face communication as well as the body of research on CMC. Indeed, impression management is an integral part of chat room interaction.A screening survey was administered to 382 college students to identify those students who interacted in chat rooms regularly and admitted to engaging in impression management and misrepresenting their identities. Ten such students were interviewed. Their accounts were recorded, transcribed, and analyzed using the grounded theory methodology. The analysis revealed that a set of antecedent conditions influence the phenomenon of impression management, which is managed by two action/interactional strategies and results in an outcome. / Department of Speech Communication
165

Generalized Survey Propagation

Tu, Ronghui 09 May 2011 (has links)
Survey propagation (SP) has recently been discovered as an efficient algorithm in solving classes of hard constraint-satisfaction problems (CSP). Powerful as it is, SP is still a heuristic algorithm, and further understanding its algorithmic nature, improving its effectiveness and extending its applicability are highly desirable. Prior to the work in this thesis, Maneva et al. introduced a Markov Random Field (MRF) formalism for k-SAT problems, on which SP may be viewed as a special case of the well-known belief propagation (BP) algorithm. This result had sometimes been interpreted to an understanding that “SP is BP” and allows a rigorous extension of SP to a “weighted” version, or a family of algorithms, for k-SAT problems. SP has also been generalized, in a non-weighted fashion, for solving non-binary CSPs. Such generalization is however presented using statistical physics language and somewhat difficult to access by more general audience. This thesis generalizes SP both in terms of its applicability to non-binary problems and in terms of introducing “weights” and extending SP to a family of algorithms. Under a generic formulation of CSPs, we first present an understanding of non-weighted SP for arbitrary CSPs in terms of “probabilistic token passing” (PTP). We then show that this probabilistic interpretation of non-weighted SP makes it naturally generalizable to a weighted version, which we call weighted PTP. Another main contribution of this thesis is a disproof of the folk belief that “SP is BP”. We show that the fact that SP is a special case of BP for k-SAT problems is rather incidental. For more general CSPs, SP and generalized SP do not reduce from BP. We also established the conditions under which generalized SP may reduce as special cases of BP. To explore the benefit of generalizing SP to a wide family and for arbitrary, particularly non-binary, problems, we devised a simple weighted PTP based algorithm for solving 3-COL problems. Experimental results, compared against an existing non-weighted SP based algorithm, reveal the potential performance gain that generalized SP may bring.
166

Alocação de tarefas de desastre na plataforma RMASBench : uma abordagem baseada em passagem de mensagens e formação de grupos / Allocation of disaster tasks in the RMASBench platform : an approach based on message passing and group formation

Corrêa, Abel January 2015 (has links)
Em ambientes de desastre urbano, grupos de agentes de resgate devem resolver tarefas de modo a minimizar os danos que podem ocorrer na cidade. Tais ambientes são dinâmicos e parcialmente observáveis, com características que dizem respeito à distância espacial, quantidade de recursos, à dificuldade da tarefa de desastre e à capacidade do agente de atendê-la. A comunicação entre os agentes pode ser ruidosa ou inexistente. Os sistemas multiagente são desenvolvidos para resolver problemas complexos e abrangentes, que estão além da capacidade de um único agente. Nesse contexto, os agentes são elementos computacionais autônomos que são responsáveis por uma parte da solução do problema. Os agentes são situados em um ambiente e podem ter habilidade social, interagindo com outros agentes para resolver as tarefas. Comumente, o domínio de desastre urbano é formalizado como um problema de alocação de tarefas e modelado como um problema de otimização de restrições distribuídas entre agentes heterogêneos, onde eles têm que escolher as tarefas que maximizam suas utilidades individuais ou minimizem seus custos individuais. Essa dissertação de mestrado propõe um modelo para formação de grupos de agentes baseado na minimização de uma métrica de distância. O modelo é formalizado como um problema de otimização de restrições distribuídas, usando algoritmos para troca de mensagens entre os agentes. O modelo chamado Formação de Grupos pela Minimização da Distância (FGMD) tem agentes autônomos que tem a capacidade de se auto-organizar sem a necessidade de um controle centralizado. Aplicamos o FGMD na plataforma RMASBench, que é um simulador para situações de desastre urbano. Comparou-se o FGMD com os algoritmos mais recentes de passagem de mensagens, tendo sido verificado que o FGMD use menos computação não-paralela. Com respeito a minimização dos danos na cidade, mostrou-se que é possível obter resultados melhores que as abordagens do estado-da-arte com leve aumento no esforço computacional. / In urban disaster environments, groups of rescue agents must solve tasks in order to minimize the damage that can occur in a city. Such environments are dynamic and partially observable, with features that correspond to spatial distance, amount of resources, difficulty of the disaster task, and the capability of the agent to handle it. The communication between the agents can be noisy or non-existent. Multiagent systems are developed to solve complex and comprehensive problems, that are beyond the capability of one single agent. In this context, the agents are autonomous computational elements that are responsible for a piece of the solution of the problem. The agents are situated in an environment, and may have social ability, interacting with other agents to solve the tasks. Commonly, the urban disaster domain is formalized as a task allocation problem, and modelled as a constraint optimization problem distributed among heterogeneous agents, where they have to choose the tasks that maximize their individual utilities or minimize their individual costs. This master thesis proposes a model for formation of groups of agents based in the minimization of a distance. The model is formalized as a distributed constraint optimization problem, using algorithms to exchange messages between agents. The model called Formation of Groups by Minimization of Distance (FGMD) has self-organizing autonomous agents without a centralized control. We applied the FGMD in the RMASBench platform, that is a simulator for urban disaster situations. We compare the FGMD with the most recent message passing algorithms, verifying that FGMD uses less non-parallel computation. With respect to the minimization of the damage in the city, we show that it is possible to obtain better results than the state-of-art approaches, with slightly increase of computational effort.
167

Design techniques for efficient sparse regression codes

Greig, Adam January 2018 (has links)
Sparse regression codes (SPARCs) are a recently introduced coding scheme for the additive white Gaussian noise channel, for which polynomial time decoding algorithms have been proposed which provably achieve the Shannon channel capacity. One such algorithm is the approximate message passing (AMP) decoder. However, directly implementing these decoders does not yield good empirical performance at practical block lengths. This thesis develops techniques for improving both the error rate performance, and the time and memory complexity, of the AMP decoder. It focuses on practical and efficient implementations for both single- and multi-user scenarios. A key design parameter for SPARCs is the power allocation, which is a vector of coefficients which determines how codewords are constructed. In this thesis, novel power allocation schemes are proposed which result in several orders of magnitude improvement to error rate compared to previous designs. Further improvements to error rate come from investigating the role of other SPARC construction parameters, and from performing an online estimation of a key AMP parameter instead of using a pre-computed value. Another significant improvement to error rates comes from a novel three-stage decoder which combines SPARCs with an outer code based on low-density parity-check codes. This construction protects only vulnerable sections of the SPARC codeword with the outer code, minimising the impact to the code rate. The combination provides a sharp waterfall in bit error rates and very low overall codeword error rates. Two changes to the basic SPARC structure are proposed to reduce computational and memory complexity. First, the design matrix is replaced with an efficient in-place transform based on Hadamard matrices, which dramatically reduces the overall decoder time and memory complexity with no impact on error rate. Second, an alternative SPARC design is developed, called Modulated SPARCs. These are shown to also achieve the Shannon channel capacity, while obtaining similar empirical error rates to the original SPARC, and permitting a further reduction in time and memory complexity. Finally, SPARCs are implemented for the broadcast and multiple access channels, and for the multiple description and Wyner-Ziv source coding models. Designs for appropriate power allocations and decoding strategies are proposed and are found to give good empirical results, demonstrating that SPARCs are also well suited to these multi-user settings.
168

Hierarchical message passing through a ProActive/GCM based runtime / Passagem de mensagem hierárquica através de um runtime baseado em ProActive/GCM

Mathias, Elton Nicoletti January 2010 (has links)
Nos últimos anos, computação em grade tem emergido como uma forma de utilização de recursos geograficamente distribuídos em múltiplas organizações. Devido ao fato de grids serem altamente distribuídos e compostos por recursos heterogêneos, a computação em grade tem dado importância a requisitos específicos, como escalabilidade, desempenho e a necessidade de um modelo de programação adequado. Vários modelos de programação já foram propostos para a computação em grade. Entretanto, ate agora, nenhum deles supriu todos os requisitos. Diferentemente, na área de alto desempenho em clusters, o modelo de passagem de mensagens se tornou um verdadeiro padrão com um grande número de bibliotecas e aplicações legadas. Este trabalho propõe um framework híbrido que combina os altos desempenho e aceitação do padrão MPI, melhorado com extensões intuitivas para permitir aos desenvolvedores o projeto e desenvolvimento de aplicações em grade ou a gridi-ficação de aplicações já existentes, com a flexibilidade de um runtime baseado em componentes, modelando uma hierarquia de recursos e suportando a comunicação entre clusters. A solução proposta se baseia na adição de comunicadores MPI e uma API relacionada, a qual oferece um suporte ao desenvolvimento de aplicações que levam em conta a topologia hierárquica de grades computacionais, adequado a desenvolvedores habituados a MPI. características (Simula_c~ao Baseada no Algoritmo de Monte Carlo, Mergesort e um solver Poisson3D) mostraram que a gridificação pode melhorar consideravelmente o desempenho dessas aplicações em ambientes de grade. Ainda que o objetivo deste trabalho não seja competir com distribuições MPI existentes, o desempenho da solução proposta _e comparável ao desempenho de MPI, sendo melhor em alguns casos. A partir dos resultados obtidos com o protótipo apresentado, é possível concluir que o custo adicionado pela utilização de componentes não é desprezível, mas dentro do esperado. Entretanto, espera-se que os benefícios para aplicações de grade devem superar os custos adicionais. Além disso, as extensões a interface MPI oferecem a usuários as abstrações necessárias ao projeto de algoritmos paralelos de forma hierárquica, visando ambientes de grade. / In the past several years, grid computing has emerged as a way to harness computing resources geographically distributed across multiple organizations. Due to its inherently largely distributed and heterogeneous nature, grid computing has enlarged the importance of specific requirements, such as scalability, performance and the need of an adequate programming model. Several programming models have been proposed for grid programming. Nonetheless, so far, none of them met all the requirements. Differently, in the field of high performance cluster computing, the message passing model became a true standard with a large number of libraries and legacy applications. This work proposes a hybrid framework that combines the high performance and high acceptability of the MPI standard boosted with intuitive extensions to enable developers to design grid applications or "gridify" existing ones with the flexibility of a component-based runtime modeling resources hierarchy and offering support to inter-cluster communication. The proposed solution relies on the addition of new MPI communicators and a related API, which may offer a support well-suited to programmers used to MPI in order to reflect a hierarchical topology within the deployed application. Carlo Simulation, a Mergesort and a Poissond3D solver) have shown that the "gridification" of applications improve application performance on grid environments. Even if the goal is not to compete against existing MPI distributions, the performance of the solution is comparable with MPI performance, even better in some cases. From the results obtained in the evaluation of this prototype, we conclude that the overhead introduced by the components is not negligible, but inside of the expected. However, we can expect the benefits to grid applications to bypass the generated overhead. Besides, the extended interface may offer users the adequate abstractions to design parallel algorithms in a hierarchical way addressing grid environments.
169

Alocação de tarefas de desastre na plataforma RMASBench : uma abordagem baseada em passagem de mensagens e formação de grupos / Allocation of disaster tasks in the RMASBench platform : an approach based on message passing and group formation

Corrêa, Abel January 2015 (has links)
Em ambientes de desastre urbano, grupos de agentes de resgate devem resolver tarefas de modo a minimizar os danos que podem ocorrer na cidade. Tais ambientes são dinâmicos e parcialmente observáveis, com características que dizem respeito à distância espacial, quantidade de recursos, à dificuldade da tarefa de desastre e à capacidade do agente de atendê-la. A comunicação entre os agentes pode ser ruidosa ou inexistente. Os sistemas multiagente são desenvolvidos para resolver problemas complexos e abrangentes, que estão além da capacidade de um único agente. Nesse contexto, os agentes são elementos computacionais autônomos que são responsáveis por uma parte da solução do problema. Os agentes são situados em um ambiente e podem ter habilidade social, interagindo com outros agentes para resolver as tarefas. Comumente, o domínio de desastre urbano é formalizado como um problema de alocação de tarefas e modelado como um problema de otimização de restrições distribuídas entre agentes heterogêneos, onde eles têm que escolher as tarefas que maximizam suas utilidades individuais ou minimizem seus custos individuais. Essa dissertação de mestrado propõe um modelo para formação de grupos de agentes baseado na minimização de uma métrica de distância. O modelo é formalizado como um problema de otimização de restrições distribuídas, usando algoritmos para troca de mensagens entre os agentes. O modelo chamado Formação de Grupos pela Minimização da Distância (FGMD) tem agentes autônomos que tem a capacidade de se auto-organizar sem a necessidade de um controle centralizado. Aplicamos o FGMD na plataforma RMASBench, que é um simulador para situações de desastre urbano. Comparou-se o FGMD com os algoritmos mais recentes de passagem de mensagens, tendo sido verificado que o FGMD use menos computação não-paralela. Com respeito a minimização dos danos na cidade, mostrou-se que é possível obter resultados melhores que as abordagens do estado-da-arte com leve aumento no esforço computacional. / In urban disaster environments, groups of rescue agents must solve tasks in order to minimize the damage that can occur in a city. Such environments are dynamic and partially observable, with features that correspond to spatial distance, amount of resources, difficulty of the disaster task, and the capability of the agent to handle it. The communication between the agents can be noisy or non-existent. Multiagent systems are developed to solve complex and comprehensive problems, that are beyond the capability of one single agent. In this context, the agents are autonomous computational elements that are responsible for a piece of the solution of the problem. The agents are situated in an environment, and may have social ability, interacting with other agents to solve the tasks. Commonly, the urban disaster domain is formalized as a task allocation problem, and modelled as a constraint optimization problem distributed among heterogeneous agents, where they have to choose the tasks that maximize their individual utilities or minimize their individual costs. This master thesis proposes a model for formation of groups of agents based in the minimization of a distance. The model is formalized as a distributed constraint optimization problem, using algorithms to exchange messages between agents. The model called Formation of Groups by Minimization of Distance (FGMD) has self-organizing autonomous agents without a centralized control. We applied the FGMD in the RMASBench platform, that is a simulator for urban disaster situations. We compare the FGMD with the most recent message passing algorithms, verifying that FGMD uses less non-parallel computation. With respect to the minimization of the damage in the city, we show that it is possible to obtain better results than the state-of-art approaches, with slightly increase of computational effort.
170

Analýza techniky jízdy na kajaku při závodech ve slalomu na divoké vodě / Analysis of techniques in wild water kayaking during competitions in wild water slalom

Buchtel, Michal January 2018 (has links)
Title: Analysis of techniques in wild water kayaking during competitions in wild water slalom Objectives: 1. To analyze race runs of the best world kayakers in top competitions in wild water slalom in frequency of use of individual types of strokes and technics of passing through upstream and downstream gates 2. Determine the percentage of using forwards and driving strokes in competition runs of best world kayakers Methods: Observationally descriptive study based on organized, non-behavioral observation of a targeted sample of the population of athletes, specifically a group of top kayakers. Sequence video analysis in the Darthfish computer program, based on the recording of predefined technical elements that appear in the competition runs of the best world kayakers. The observation was done by one professional expert by intra-observating method. The data was processed in the Microsoft Excel computer program using basic statistics. The individual outputs were described in details. Results: Top world kayakers are mostly using sweep technique when passing through the upstream gates in competitions There is a high share of forwards strokes against driving strokes in competition runs of top world kayakers Key words: wild water slalom, technique, tactics, competition, passing gates, video analysis

Page generated in 0.0751 seconds