Spelling suggestions: "subject:"passive aswitching"" "subject:"passive ipswitching""
1 |
The study and application of multi-reentrant two-spherical-mirror ring lasersHuang, Pi-Ling 23 June 2003 (has links)
A novel non-planar and multi-reentrant two-spherical-mirror ring cavity is demonstrated. It is compact and free of astigmatism compare to the commercial ring cavity systems. The multi-reentrant condition of the ring cavity is derived and the stability of the laser cavity is analyzed. The study of polarization evolution in this kind of ring cavity is also presented. Unidirectional operation is achieved by use of reciprocal and nonreciprocal polarization rotators to differentiate the round-trip loss. The multi-reentrant ring cavity has been utilized in single frequency laser and passively Q-switched laser.
Single frequency laser possesses the advantages of high coherence and low noise, which can be used to the applications such as precision measurement. In the methods of single frequency generation, ring cavity configuration was shown to be the most robust one. Using this ring cavity, an IR and its intra-cavity frequency doubled green laser were demonstrated which the amplitude noise is lower than 0.3%.
Passively Q-switched laser is an efficient and compact way to generate high-peak-power laser pulses because high voltages and fast driving electronics are not required. Its high power is useful for diverse applications including nonlinear optical processes, micromachining, material processing and range finders. But the major drawback of a passively Q-switched laser is its inherent large timing jitter, which is mainly originated from the photo dynamics in the cavity, environmental instabilities and spontaneous noise from the gain medium. In our study, we demonstrated the operation of a low-jitter, passively Q-switched laser by using the reentrant two-mirror unidirectional ring cavity, which generates a pulse width of 63ns, peak power of 250 W laser output. Due to the elimination of spontaneous noise and spatial hole burning effects, the timing jitter can be maintained below 3% over a wide range of pump powers with integrations of over 52,000 pulses.
|
2 |
Diode-Pumped, 2-Micron, Q-Switched Tm:YAG Microchip LaserPhelps, Charles Dustin 16 May 2011 (has links)
No description available.
|
3 |
Compact current pulse-pumped GaAs–AlGaAs laser diode structures for generating high peak-power (1–50 watt) picosecond-range single optical pulsesLanz, B. (Brigitte) 18 October 2016 (has links)
Abstract
Although gain-switching is a simple, well-established technique for obtaining ultrashort optical pulses generated with laser diodes, the optical energy in a pulse achievable from commercial structures using this technique is no more than moderate and the ‘spiking’ behaviour seen at turn-on is likely to evolve into trailing oscillations.
This thesis investigates, develops and improves laser diodes in order to offer experimentally verified solutions for maximizing the optical energy so as to achieve a peak power of several watts in a single optical pulse of picosecond-range duration in the gain-switching operation regime, and for suppressing the energy located in any trailing pulses to a negligible level relative to the total optical pulse energy. This was addressed by means of either (i) an ultrashort pump current pulse with an amplitude range ~(1–10) A or (ii) custom laser diode structures, both options being capable of operating uncooled at room temperature (23±3°C).
For the first solution a unique superfast gallium arsenide (GaAs) avalanche transistor was utilized as a switch in order to achieve an injection current pulse with a duration of < 1 ns, which is short enough to generate only a first optical ‘spike’ when pumping a commercial laser diode. The most promising structure with regard to the second solution was an edge-emitting semiconductor laser having a strongly asymmetric broadened double heterostructure with a relatively thick active layer. Laser pulses with full width at half maximum (FWHM) of ~100 ps and an optical energy of >3 nJ but with some trailing oscillations were achieved in experiments employing injection current pulses in the nanosecond range with an amplitude of ≤17 A, generated using inexpensive silicon (Si) electronics. The performance was improved by introducing a saturable absorber (SA) into the laser cavity, which suppressed the formation of trailing oscillations, resulting in a single optical pulse. / Tiivistelmä
”Gain switching” (vahvistuskytkentä) on tunnettu tekniikka lyhyiden (<100 ps) optisten pulssien generoimiseen laserdiodeilla. Kaupallisia laserdiodirakenteita käyttäen optinen energia rajoittuu kuitenkin 10…100 pJ:n tasolle. Tällöinkin, erityisesti suurilla energiatasoilla, optisessa pulssissa ilmenee voimakkaita jälkioskillaatioita.
Tässä väitöskirjassa tutkittiin ja kehitettiin kokeellisesti varmennettuja laserdiodilähetinrakenteita tavoitteena saavuttaa >1 nJ:n optisen pulssin energia ja ~100 ps:n pulssinpituus gain-switching -toimintamoodissa. Tavoitteena oli myös minimoida jälkipulssien energia. Tutkimuksen pääsisältönä on kaksi toimintaperiaatetta: Toisessa tekniikassa päähuomio kohdistuu laseridiodin virta-ajuriin, johon kehitettiin elektroniikka, joka kykenee tuottamaan nopeita virtapulsseja laajalla pulssivirta-alueella. Virtapulssin nopeuden kasvattamisen (<1 ns) osoitettiin edistävän gain switching -ilmiötä. Toisena tekniikkana tutkittiin räätälöityä laserdiodirakennetta, joka sisäisen toimintansa perusteella tuottaa dynaamisessa ohjaustilanteessa tehokkaan ja nopean laserpulssin. Kummankin periaatteen osoitettiin toimivan huonelämpötilassa (23±3°C) ilman erillistä jäähdytystä.
Ensimmäisessä ratkaisussa käytettiin nopeaa gallium-arsenidi (GaAs) -avalanchetransistoria virtakytkimenä, jolla saavutettiin <1 ns FWHM injektiovirtapulssi 10 A:n virtatasolla. Tällainen virtapulssi on riittävän lyhyt virittämään ”gain switching” -ilmiön nJ-energiatasolla. Lupaavin rakenne toiseksi ratkaisuksi oli reunaemittoiva puolijohdelaseri, jossa epäsymmetrinen aaltoputki ja aktiivinen alue ovat sijoitettu normaalista laserdiodirakenteesta poiketen rinnakkain. Tällä rakenteella voitiin tuottaa ~100 ps levyisiä (FWHM) ja >3 nJ optisen kokonaisenergian omavia laserpulsseja edullisella pii-pohjaisella (Si) elektroniikalla luoduilla 1.5–2 ns:n (FWHM) ≤17 A injektiovirtapulsseilla. Suorituskykyä saatiin edelleen parannettua istuttamalla saturoiva absorbaattori (SA) laserin optiseen onteloon. Tämän osoitettiin vähentävän jälkioskillaatioiden muodostumista.
|
Page generated in 0.0843 seconds