• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 73
  • 10
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 246
  • 230
  • 57
  • 49
  • 38
  • 30
  • 29
  • 26
  • 26
  • 24
  • 22
  • 19
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Mutantní glykosidasy s vysokou substrátovou specifitou a jejich analýza / Mutant glycosidases with a high substrate specificity and their analysis

Nekvasilová, Pavlína January 2019 (has links)
β-N-acetylhexosaminidases (EC 3.2.1.52, GH 20) are retaining exo-glycosidases that in vivo cleavage both β-N-acetylglucosamine (GlcNAc) or β-N-acetylgalactosamine (GalNAc) residues fom glycostructures. Under suitable reaction conditions, these enzymes are able to synthesize the glycosidic bond in good yields. Substitution of selected amino acid(s) in the emzyme active site by site-directed mutagenesis may change the enzyme's substrate specificity or suppress the hydrolytic activity of the enzyme in favor of synthesis. The present thesis deals with three mutant β-N-acetylhexosaminidases from Talaromyces flavus, in which the amino acid residues responsible for binding to C-4 hydroxyl of the substrate (Arg218, Glu546) were exchanged for amino acids proposed on the basis of molecular modeling. The effect of introduced single point mutations on substrate specificity of prepared enzymes was studied. Mutant β-N-acetylhexosaminidases were heterologously expressed in Pichia pastoris and characterized. Furthermore, transglycosylation reactions with these enzymes were performed. The prepared carbohydrate products were characterized by NMR.
222

Optimizing the human aryl hydrocarbon receptor (hAHR) expression in Pichia pastoris

qian, junyu 01 January 2022 (has links)
The aryl hydrocarbon receptor (AHR) is a transcription factor which heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (Arnt) to regulate downstream gene transcription. For the purpose of studying the crystal structure of human aryl hydrocarbon receptor (hAHR), it is essential to obtain abundant amount of pure recombinant protein.Basing on the benefits of using P. pastoris system to produce recombinant protein, including appropriate folding, secretion of interest proteins to the external environment of the cell, and easier purification process of protein due to the its limited production of endogenous secretory proteins [1], our lab chose P. pastoris yeast as the host to overexpress human AHR. My lab has successfully used the protease-deficient P. pastoris (ySMD1163) strain to express AHR [2], but unfortunately the yield is modest, presumably due to low copy number. My work addressed whether increasing the copy number of hAHR in the yeast genome would increase the expression level of hAHR in Pichia pastoris. Results from my experiments showed that although the copy number correlated with the expression levels of hAHR, the increased expression of the hAHR largely in the pellet, suggesting that the soluble expression of hAHR can’t be enhanced merely by increasing its production.
223

Integrovaný vývoj bioprocesu: Z půdního enzymu do kvasinkové produkční platformy / Integrated development of a bioprocess: From the soil enzyme to the yeast production platform

Borčinová, Martina January 2021 (has links)
For a sustainable future, there is a call to increase the market share of bio-based technologies and materials. Microbial-based technologies have the potential and the ability to contribute substantively on many levels to global efforts to achieve sustainability. Development and utilization of microbial technologies is, however, an extensive process involving numerous steps, including the discovery of novel technologies and the development of industrially viable production systems. In the presented thesis, individual steps of microbial biotechnology development were addressed. In the first part of the study, a variety of methodological approaches were employed in order to study the effect of the anthropogenic activity (i.e., decades lasting production of penicillin G) on the structure of soil microbial communities. Moreover, both cultivable and non-cultivable fractions of populations were subjected to functional screening in order to unravel the biotechnological potential of the microorganisms in terms of production of enzymes involved in biotransformation of beta-lactam antibiotics: penicillin G acylase (PGA) and alpha amino acid ester hydrolase (AEH). Our results indicated that the impacted communities harbour a microbial community with increased diversity and richness. However, on the...
224

Production and engineering of a xyloglucan endo-transglycosylase from Populus tremula x tremuloides

Henriksson, Maria January 2007 (has links)
The aim of this work was to develop a production process for the enzyme xyloglucan endo-transglycosylase from Populus tremula x tremuloides (PttXET16-34). The natural transglycosylating activity of this enzyme has previously been employed in a XET-Technology. This chemo enzymatic method is useful for biomimetic modification of cellulose surfaces and holds great potential for industrial applications. Thus, it requires that the XET-enzyme can be produced in larger scale. This work also shows how the wildtype PttXET16-34 was modified into a glycosynthase. By mutation of the catalytic nucleophile into an alanine, glycine or serine residue, enzymes capable of synthesising defined xyloglucan fragments were obtained. These defined compounds are very valuable for further detailed studies of xyloglucan active-enzymes, but are also useful in molecular studies of the structurally important xyloglucan-cellulose interaction. A heterologous production system for PttXET16-34 was previously developed in the methylotrophic yeast Pichia pastoris. A methanol-limited fed-batch process was also previously established, but the yield of active XET was low due to proteolysis problems and low productivity. Therefore, two alternative fed-batch techniques were investigated for the production of PttXET16-34: a temperature-limited fed-batch (TLFB) and an oxygen-limited high-pressure fed-batch (OLHPFB). For the initial recovery of XET after the fermentation process, two different downstream processes were investigated: expanded bed adsorption (EBA) and cross-flow filtration (CFF). / <p>QC 20101108</p>
225

Expression and Purification of Human Lysosomal β-galactosidase from Pichia Pastoris

Tarullo, Sarah E 07 November 2014 (has links) (PDF)
Lysosomal storage diseases are genetically inherited diseases caused by the dysfunction of lysosomal enzymes. In a normal cell, lysosomal enzymes cleave specific macromolecules as they are transported to the lysosome. However, in diseased cells, these lysosomal enzymes are either absent or malfunctioning, causing macromolecular substrates to accumulate, becoming toxic to the cell. Over fifty lysosomal storage diseases have been identified, collectively occurring in one out of 7,700 live births. We investigated the lysosomal enzyme β-galactosidase (β-gal). In order to study the biochemistry and enzymology of this protein a robust expression system was needed. The GLB1 gene has been inserted into Pichia pastoris creating high protein expressing cell lines. The result of this work will yield a high expression system for β-gal, which can then be subjected to structural and biochemical studies.
226

Engineering the N-Glycosylation Pathway in Pichia Pastoris for the Expression of Glycoprotein Hormones

Manoharan, Simna January 2016 (has links) (PDF)
Proteins, participating in a myriad of biological function, are at the core of all cellular activities occurring within living organisms. Therapeutic proteins, hence constitute a major part of the pharmaceutical industry. The glycoprotein hormones follicle stimulating hormone (FSH), luteinizing hormone (LH), thyroid stimulating hormone (TSH) and human chorionic gonadotropin (CG) regulate various reproductive and metabolic functions in humans and hence have high therapeutic potentials. The increasing demand of recombinant proteins for therapeutic uses drives the development of better expression systems. The methylotrophic yeast Pichia pastoris, has been termed as an industrial workhorse for heterologous protein expression. However, the N-glycosylation in yeast is of the high mannose type, resulting in a reduced serum half-life of the recombinant proteins. In the current work, we have re-engineered the Pichia N-glycosylation pathway to mimic the human type of N-glycosylation. Towards this end, we abolished the yeast native N-glycosylation and introduced enzymes from various eukaryotic sources into the system. These modifications resulted in the conversion of the yeast Man9-20GlcNAc2 glycan structure to a more human like GlcNAc2Man3GlcNAc2 form on over 70 % of the heterologous expressed proteins. In order to demonstrate the application of these strains as efficient protein expression hosts, the glycoengineerd Pichia was used for large scale expression of the glycoprotein hormones, hCG and FSH. The purified recombinant hormones were found to have binding affinities and structure similar to that of the natural hormones. These recombinant hormones were also able to elicit over two fold responses in animal models compared to buffer controls and the activity was comparable to the natural counterparts. Thus, we report the generation of a glycoengineered Pichia pastoris, which can be considered as a serious contender for the expression of glycosylated proteins of therapeutic importance.
227

Recombination and Screening of Putative Glucosyltransferase Clone 4 in Pichia pastoris

Loftis, Peri, McIntosh, Cecelia A. 12 August 2012 (has links)
Flavonoids are a group of plant secondary metabolites that are vital to the cell systems of plants. The intake of these chemicals is advantageous to animals for their antioxidant properties that affect the function of immune and inflammatory cells. The bitter taste of grapefruit (Citrus paradise) and other citrus species is caused by the accumulation of glycosylated flavonoids. Glucosyltransferases (GTs) are enzymes that add glucose moieties to a carbon or hydroxyl group of natural products. The function of a putative secondary product GT clone was tested. In previous research, putative GT 4 was cloned into a pCD1 modified pET expression system, heterologously expressed in E.coli, and screened for activity with only a few substrates, and little GT activity was found. Issues of protein localized to inclusion bodies in bacteria are being addressed. PGT 4 is being heterologously expressed in yeast (Pichia pastoris) to allow for protein production and analysis. PGT 4 will be screened for GT activity with different flavonoid subclass representatives and simple phenolics. PGT 4’s significant impact on the biochemical regulation of Citrus paradise will be elucidated with its characterization and determination of PGT 4’s structure and function.
228

Recombination and Screening of Putative Grapefruit Glucosyltransferase 4 in Pichia pastoris

Loftis, Peri, McIntosh, Cecelia A. 04 April 2013 (has links)
Flavonoids are a group of plant secondary metabolites that are vital to the cell systems of plants. The intake of these chemicals is advantageous to animals for their antioxidant properties that affect the function of immune and inflammatory cells. The bitter taste of grapefruit (Citrus paradisi) and other citrus species is caused by the accumulation of glycosylated flavonoids. Glucosyltransferases (GTs) are enzymes that add glucose moieties to a carbon or hydroxyl group of natural products. The function of a putative secondary product GT clone was tested. In previous research, putative GT 4 was cloned into a pCD1 modified pET expression system, heterologously expressed in E.coli, and screened for activity with a few substrates; little GT activity was found. Issues of protein localized to inclusion bodies in bacteria were addressed. PGT 4 is being heterologously expressed in yeast (Pichia pastoris) to allow for protein production and analysis. PGT 4 was screened for GT activity with different flavonoid subclass representatives and simple phenolics.
229

Expression of Manganese Lipoxygenase and Site-Directed Mutagenesis of Catalytically Important Amino Acids : Studies on Fatty Acid Dioxygenases

Cristea, Mirela January 2006 (has links)
<p>Polyunsaturated fatty acids can be bioactivated by two families of dioxygenases, which either contain non-heme iron (lipoxygenases) or heme (cyclooxygenases, linoleate diol synthases and α-dioxygenases).</p><p>Lipoxygenases and their products play important roles in the pathophysiology of plants and fungi. The only known lipoxygenase with catalytic manganese (Mn-lipoxygenase) is secreted by a devastating root pathogen of wheat, the Take-all fungus <i>Gaeumannomyces graminis</i>. Its mycelia also contains linoleate diol synthase (LDS), which can oxidize linoleic acid to sporulation hormones.</p><p>Mn-lipoxygenase belongs to the lipoxygenase gene family. Recombinant Mn-lipoxygenase was successfully expressed in the yeast <i>Pichia pastoris</i> with an expression level of 30 mg/L in fermentor culture. The tentative metal ligands of Mn-lipoxygenase were studied by site-directed mutagenesis. The results show that four residues His-274, His-278, His-462 and the C-terminal Val-602 likely coordinate manganese, as predicted by sequence alignments with Fe lipoxygenases.</p><p>Mn-lipoxygenase (~100 kDa) contains an Asp-Pro peptide bond in the N-terminal region, which appears to hydrolyze during storage and in the acidic media during Pichia expression to an active enzyme of smaller size, mini-Mn-lipoxygenase (~70 kDa). The active form of Mn-lipoxygenase can oxygenate fatty acids of variable chain length, suggesting that the fatty acids enter the catalytic site with the ω-end (“tail first”).</p><p>Mn-lipoxygenase is an <i>R</i>-lipoxygenase with a conserved Gly316 residue known as a determinant of stereospecificity in other <i>R/S</i> lipoxygenases. The Gly316Ala mutant showed an increased hydroperoxide isomerase activity and transformed 18:3n-3 and 17:3n-3 to epoxyalcohols.</p><p>The genome of the rice blast fungus, <i>Magnaporthe grisea</i>, contains putative genes of lipoxygenases and LDS. Mycelia of <i>M. grisea</i> were found to express LDS activity. This enzyme was cloned and sequenced and showed 65% amino acid identity with LDS from <i>G.graminis</i>. </p><p>Take-all and the rice blast fungi represent a constant threat to staple foods worldwide. Mn-lipoxygenase and LDS might provide new means to combat these pathogens.</p>
230

Expression of Manganese Lipoxygenase and Site-Directed Mutagenesis of Catalytically Important Amino Acids : Studies on Fatty Acid Dioxygenases

Cristea, Mirela January 2006 (has links)
Polyunsaturated fatty acids can be bioactivated by two families of dioxygenases, which either contain non-heme iron (lipoxygenases) or heme (cyclooxygenases, linoleate diol synthases and α-dioxygenases). Lipoxygenases and their products play important roles in the pathophysiology of plants and fungi. The only known lipoxygenase with catalytic manganese (Mn-lipoxygenase) is secreted by a devastating root pathogen of wheat, the Take-all fungus Gaeumannomyces graminis. Its mycelia also contains linoleate diol synthase (LDS), which can oxidize linoleic acid to sporulation hormones. Mn-lipoxygenase belongs to the lipoxygenase gene family. Recombinant Mn-lipoxygenase was successfully expressed in the yeast Pichia pastoris with an expression level of 30 mg/L in fermentor culture. The tentative metal ligands of Mn-lipoxygenase were studied by site-directed mutagenesis. The results show that four residues His-274, His-278, His-462 and the C-terminal Val-602 likely coordinate manganese, as predicted by sequence alignments with Fe lipoxygenases. Mn-lipoxygenase (~100 kDa) contains an Asp-Pro peptide bond in the N-terminal region, which appears to hydrolyze during storage and in the acidic media during Pichia expression to an active enzyme of smaller size, mini-Mn-lipoxygenase (~70 kDa). The active form of Mn-lipoxygenase can oxygenate fatty acids of variable chain length, suggesting that the fatty acids enter the catalytic site with the ω-end (“tail first”). Mn-lipoxygenase is an R-lipoxygenase with a conserved Gly316 residue known as a determinant of stereospecificity in other R/S lipoxygenases. The Gly316Ala mutant showed an increased hydroperoxide isomerase activity and transformed 18:3n-3 and 17:3n-3 to epoxyalcohols. The genome of the rice blast fungus, Magnaporthe grisea, contains putative genes of lipoxygenases and LDS. Mycelia of M. grisea were found to express LDS activity. This enzyme was cloned and sequenced and showed 65% amino acid identity with LDS from G.graminis. Take-all and the rice blast fungi represent a constant threat to staple foods worldwide. Mn-lipoxygenase and LDS might provide new means to combat these pathogens.

Page generated in 0.0682 seconds