1 |
Monte Carlo Path Simulation and the Multilevel Monte Carlo MethodJanzon, Krister January 2018 (has links)
A standard problem in the field of computational finance is that of pricing derivative securities. This is often accomplished by estimating an expected value of a functional of a stochastic process, defined by a stochastic differential equation (SDE). In such a setting the random sampling algorithm Monte Carlo (MC) is useful, where paths of the process are sampled. However, MC in its standard form (SMC) is inherently slow. Additionally, if the analytical solution to the underlying SDE is not available, a numerical approximation of the process is necessary, adding another layer of computational complexity to the SMC algorithm. Thus, the computational cost of achieving a certain level of accuracy of the estimation using SMC may be relatively high. In this thesis we introduce and review the theory of the SMC method, with and without the need of numerical approximation for path simulation. Two numerical methods for path approximation are introduced: the Euler–Maruyama method and Milstein's method. Moreover, we also introduce and review the theory of a relatively new (2008) MC method – the multilevel Monte Carlo (MLMC) method – which is only applicable when paths are approximated. This method boldly claims that it can – under certain conditions – eradicate the additional complexity stemming from the approximation of paths. With this in mind, we wish to see whether this claim holds when pricing a European call option, where the underlying stock process is modelled by geometric Brownian motion. We also want to compare the performance of MLMC in this scenario to that of SMC, with and without path approximation. Two numerical experiments are performed. The first to determine the optimal implementation of MLMC, a static or adaptive approach. The second to illustrate the difference in performance of adaptive MLMC and SMC – depending on the used numerical method and whether the analytical solution is available. The results show that SMC is inferior to adaptive MLMC if numerical approximation of paths is needed, and that adaptive MLMC seems to meet the complexity of SMC with an analytical solution. However, while the complexity of adaptive MLMC is impressive, it cannot quite compensate for the additional cost of approximating paths, ending up roughly ten times slower than SMC with an analytical solution.
|
Page generated in 0.0901 seconds