Spelling suggestions: "subject:"euler–maruyama"" "subject:"euler–haruyama""
1 |
Métodos de simulação Monte Carlo para aproximação de estratégias de hedging ideais / Monte Carlo simulation methods to approximate hedging strategiesSiqueira, Vinicius de Castro Nunes de 27 July 2015 (has links)
Neste trabalho, apresentamos um método de simulação Monte Carlo para o cálculo do hedging dinâmico de opções do tipo europeia em mercados multidimensionais do tipo Browniano e livres de arbitragem. Baseado em aproximações martingales de variação limitada para as decomposições de Galtchouk-Kunita-Watanabe, propomos uma metodologia factível e construtiva que nos permite calcular estratégias de hedging puras com respeito a qualquer opção quadrado integrável em mercados completos e incompletos. Uma vantagem da abordagem apresentada aqui é a flexibilidade de aplicação do método para os critérios quadráticos de minimização do risco local e de variância média de forma geral, sem a necessidade de se considerar hipóteses de suavidade para a função payoff. Em particular, a metodologia pode ser aplicada para calcular estratégias de hedging quadráticas multidimensionais para opções que dependem de toda a trajetória dos ativos subjacentes em modelos de volatilidade estocástica e com funções payoff descontínuas. Ilustramos nossa metodologia, fornecendo exemplos numéricos dos cálculos das estratégias de hedging para opções vanilla e opções exóticas que dependem de toda a trajetória dos ativos subjacentes escritas sobre modelos de volatilidade local e modelos de volatilidade estocástica. Ressaltamos que as simulações são baseadas em aproximações para os processos de preços descontados e, para estas aproximações, utilizamos o método numérico de Euler-Maruyama aplicado em uma discretização aleatória simples. Além disso, fornecemos alguns resultados teóricos acerca da convergência desta aproximação para modelos simples em que podemos considerar a condição de Lipschitz e para o modelo de volatilidade estocástica de Heston. / In this work, we present a Monte Carlo simulation method to compute de dynamic hedging of european-type contingent claims in a multidimensional Brownian-type and arbitrage-free market. Based on bounded variation martingale approximations for the Galtchouk-Kunita- Watanabe decomposition, we propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to any square-integrable contingent claim in complete and incomplete markets. An advantage of our approach is the exibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff function. In particular, the methodology can be applied to compute multidimensional quadratic hedgingtype strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. We illustrate our methodology, providing some numerical examples of the hedging strategies to vanilla and exotic contingent claims written on local volatility and stochastic volatility models. The simulations are based in approximations to the discounted price processes and, for these approximations, we use an Euler-Maruyama-type method applied to a simple random discretization. We also provide some theoretical results about the convergence of this approximation in simple models where the Lipschitz condition is satisfied and the Heston\'s stochastic volatility model.
|
2 |
Métodos de simulação Monte Carlo para aproximação de estratégias de hedging ideais / Monte Carlo simulation methods to approximate hedging strategiesVinicius de Castro Nunes de Siqueira 27 July 2015 (has links)
Neste trabalho, apresentamos um método de simulação Monte Carlo para o cálculo do hedging dinâmico de opções do tipo europeia em mercados multidimensionais do tipo Browniano e livres de arbitragem. Baseado em aproximações martingales de variação limitada para as decomposições de Galtchouk-Kunita-Watanabe, propomos uma metodologia factível e construtiva que nos permite calcular estratégias de hedging puras com respeito a qualquer opção quadrado integrável em mercados completos e incompletos. Uma vantagem da abordagem apresentada aqui é a flexibilidade de aplicação do método para os critérios quadráticos de minimização do risco local e de variância média de forma geral, sem a necessidade de se considerar hipóteses de suavidade para a função payoff. Em particular, a metodologia pode ser aplicada para calcular estratégias de hedging quadráticas multidimensionais para opções que dependem de toda a trajetória dos ativos subjacentes em modelos de volatilidade estocástica e com funções payoff descontínuas. Ilustramos nossa metodologia, fornecendo exemplos numéricos dos cálculos das estratégias de hedging para opções vanilla e opções exóticas que dependem de toda a trajetória dos ativos subjacentes escritas sobre modelos de volatilidade local e modelos de volatilidade estocástica. Ressaltamos que as simulações são baseadas em aproximações para os processos de preços descontados e, para estas aproximações, utilizamos o método numérico de Euler-Maruyama aplicado em uma discretização aleatória simples. Além disso, fornecemos alguns resultados teóricos acerca da convergência desta aproximação para modelos simples em que podemos considerar a condição de Lipschitz e para o modelo de volatilidade estocástica de Heston. / In this work, we present a Monte Carlo simulation method to compute de dynamic hedging of european-type contingent claims in a multidimensional Brownian-type and arbitrage-free market. Based on bounded variation martingale approximations for the Galtchouk-Kunita- Watanabe decomposition, we propose a feasible and constructive methodology which allows us to compute pure hedging strategies with respect to any square-integrable contingent claim in complete and incomplete markets. An advantage of our approach is the exibility of quadratic hedging in full generality without a priori smoothness assumptions on the payoff function. In particular, the methodology can be applied to compute multidimensional quadratic hedgingtype strategies for fully path-dependent options with stochastic volatility and discontinuous payoffs. We illustrate our methodology, providing some numerical examples of the hedging strategies to vanilla and exotic contingent claims written on local volatility and stochastic volatility models. The simulations are based in approximations to the discounted price processes and, for these approximations, we use an Euler-Maruyama-type method applied to a simple random discretization. We also provide some theoretical results about the convergence of this approximation in simple models where the Lipschitz condition is satisfied and the Heston\'s stochastic volatility model.
|
3 |
Monte Carlo Path Simulation and the Multilevel Monte Carlo MethodJanzon, Krister January 2018 (has links)
A standard problem in the field of computational finance is that of pricing derivative securities. This is often accomplished by estimating an expected value of a functional of a stochastic process, defined by a stochastic differential equation (SDE). In such a setting the random sampling algorithm Monte Carlo (MC) is useful, where paths of the process are sampled. However, MC in its standard form (SMC) is inherently slow. Additionally, if the analytical solution to the underlying SDE is not available, a numerical approximation of the process is necessary, adding another layer of computational complexity to the SMC algorithm. Thus, the computational cost of achieving a certain level of accuracy of the estimation using SMC may be relatively high. In this thesis we introduce and review the theory of the SMC method, with and without the need of numerical approximation for path simulation. Two numerical methods for path approximation are introduced: the Euler–Maruyama method and Milstein's method. Moreover, we also introduce and review the theory of a relatively new (2008) MC method – the multilevel Monte Carlo (MLMC) method – which is only applicable when paths are approximated. This method boldly claims that it can – under certain conditions – eradicate the additional complexity stemming from the approximation of paths. With this in mind, we wish to see whether this claim holds when pricing a European call option, where the underlying stock process is modelled by geometric Brownian motion. We also want to compare the performance of MLMC in this scenario to that of SMC, with and without path approximation. Two numerical experiments are performed. The first to determine the optimal implementation of MLMC, a static or adaptive approach. The second to illustrate the difference in performance of adaptive MLMC and SMC – depending on the used numerical method and whether the analytical solution is available. The results show that SMC is inferior to adaptive MLMC if numerical approximation of paths is needed, and that adaptive MLMC seems to meet the complexity of SMC with an analytical solution. However, while the complexity of adaptive MLMC is impressive, it cannot quite compensate for the additional cost of approximating paths, ending up roughly ten times slower than SMC with an analytical solution.
|
4 |
ANALYSIS AND NUMERICAL APPROXIMATION OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH CONTINUOUSLY DISTRIBUTED DELAYGallage, Roshini Samanthi 01 August 2022 (has links) (PDF)
Stochastic delay differential equations (SDDEs) are systems of differential equations with a time lag in a noisy or random environment. There are many nonlinear SDDEs where a linear growth condition is not satisfied, for example, the stochastic delay Lotka-Volterra model of food chain discussed by Xuerong Mao and Martina John Rassias in 2005. Much research has been done using discrete delay where the dynamics of a process at time t depend on the state of the process in the past after a single fixed time lag \tau. We are researching processes with continuously distributed delay which depend on weighted averages of past states over the entire time lag interval [t-\tau,t].By using martingale concepts, we prove sufficient conditions for the existence of a unique solution, ultimate boundedness, and non-extinction of one-dimensional nonlinear SDDE with continuously distributed delay. We give generalized Khasminskii-type conditions which along with local Lipschitz conditions are sufficient to guarantee the existence of a unique global solution of certain n-dimensional nonlinear SDDEs with continuously distributed delay. Further, we give conditions under which Euler-Maruyama numerical approximations of such nonlinear SDDEs converge in probability to their exact solutions.We give some examples of one-dimensional and 2-dimensional stochastic differential equations with continuously distributed delay which satisfy the sufficient conditions of our theorems. Moreover, we simulate their solutions and analyze the error of approximation using MATLAB to implement the Euler-Maruyama algorithm.
|
5 |
Uma aproximação do tipo Euler-Maruyama para o processo de Cox-Ingersoll-RossFerreira, Ricardo Felipe 26 February 2015 (has links)
Made available in DSpace on 2016-06-02T20:06:10Z (GMT). No. of bitstreams: 1
6520.pdf: 1838901 bytes, checksum: 35b2a71ea573764ae46492a67c0ef3d6 (MD5)
Previous issue date: 2015-02-26 / Universidade Federal de Sao Carlos / In this master's thesis we work with Cox-Ingersoll-Ross (CIR) process. This process was originally proposed by John C. Cox, Jonathan E. Ingersoll Jr. and Stephen A. Ross in 1985. Nowadays, this process is widely used in financial modeling, e.g. as a model for short-time interest rates or as volatility process in the Heston model. The stochastic diferential equation (SDE) which defines this model does not have closed form solution, so we need to approximate the process by some numerical method. In the literature, several numerical approximations has been proposed based in interval discretization. We approximate the CIR process by Euler-Maruyama-type method based in random discretization proposed by Leão e Ohashi (2013) under Feller condition. In this context, we obtain an exponential convergence order for this approximation and we use Monte Carlo techniques to compare the numerical results with theoretical values. / Nesta dissertação de mestrado nós trabalhamos com o processo de Cox-Ingersoll- Ross, que foi originalmente proposto por John C. Cox, Jonathan E. Ingersoll Jr. e Stephen A. Ross em 1985. Este processo é amplamente utilizado em modelagem financeira, por exemplo, para descrever a evolução de taxas de juros ou como o processo de volatilidade no modelo de Heston. A equação diferencial estocástica que define este processo não possui solução fechada, logo faz-se necessária a aproximação do processo via algum método numérico. Na literatura diversos trabalhos propõem aproximações baseadas em esquemas de discretização intervalar. Nós aproximamos o processo de Cox-Ingersoll-Ross através de um método numérico do tipo Euler- Maruyama baseado na discretização aleatória proposta por Leão e Ohashi (2013) sob a condição de Feller. Neste contexto, mostramos que esta aproximação possui uma ordem de convergência exponencial e utilizamos técnicas de simulação Monte Carlo para comparar resultados numéricos com valores teóricos.
|
6 |
[en] LOW INTENSITY LIGHT MEETS FEEDBACK COOLED LEVITATED NANOPARTICLES / [pt] LUZ DE BAIXA INTENSIDADE ENCONTRA NANOPARTÍCULAS RESFRIADASIGOR JOSE CALIFRER 14 November 2024 (has links)
[pt] Resfriamento é o passo inicial necessário a qualquer experimento
optomecânico que tenha como objetivo desbloquear o potencial das pinças
ópticas, tanto para a melhoria da sensiblidade a forças em aplicações
de sensoreamento quanto para estudos de física quântica fundamental
na microescala. O propósito do trabalho descrito nesta dissertação foi
o de melhorar a montagem de uma pinça óptica para resfriamento por
retroalimentação do movimento translacional de nanopartículas levitadas.
Nós implementamos a coleta de luz retroespalhada pela partícula para
melhorar a eficiência de detecção do movimento ao longo do eixo óptico.
Usando um ambiente de simulação numérica em Python, nós também
exploramos o potencial de sistemas optomecânicos como sensores para estados
de luz com intensidades muito baixas. / [en] Cooling is the necessary first step for any optomechanical experiment
aiming to unleash the full potential of optical tweezers, both in the context of
improving force sensitivity in sensor applications and of studying fundamental
quantum physics at the microscale. The purpose of the work described in this
dissertation was to improve an optical tweezer setup for electrical feedback
cooling of the translational motion of levitated nanoparticles. We implement
collection of backscattered light from the particle for improved detection
efficiency of motion along the optical axis. Using a numerical simulation
environment in Python, we also explore the potential of optomechanical
systems as sensors for light states with very low intensities.
|
7 |
A Stochastic Delay Model for Pricing Corporate LiabilitiesKemajou, Elisabeth 01 August 2012 (has links)
We suppose that the price of a firm follows a nonlinear stochastic delay differential equation. We also assume that any claim whose value depends on firm value and time follows a nonlinear stochastic delay differential equation. Using self-financed strategy and replication we are able to derive a random partial differential equation (RPDE) satisfied by any corporate claim whose value is a function of firm value and time. Under specific final and boundary conditions, we solve the RPDE for the debt value and loan guarantees within a single period and homogeneous class of debt. We then analyze the risk structure of a levered firm. We also evaluate loan guarantees in the presence of more than one debt. Furthermore, we perform numerical simulations for specific companies and compare our results with existing models.
|
8 |
Uma aproximação do tipo Euller - Maruyama para o processo de Cox-Ingersoll-Ross / An Euler-Maruyama-tupe method approach for the Cox-Ingersoll-RossFerreira, Ricardo Felipe 26 February 2015 (has links)
Nesta dissertação de mestrado nós trabalhamos com o processo de Cox-Ingersoll- Ross, que foi originalmente proposto por John C. Cox, Jonathan E. Ingersoll Jr. e Stephen A. Ross em 1985. Este processo é amplamente utilizado em modelagem financeira, por exemplo, para descrever a evolução de taxas de juros ou como o processo de volatilidade no modelo de Heston. A equação diferencial estocástica que define este processo não possui solução fechada, logo faz-se necessária a aproximação do processo via algum método numérico. Na literatura diversos trabalhos propõem aproximações baseadas em esquemas de discretização intervalar. Nós aproximamos o processo de Cox-Ingersoll-Ross através de um método numérico do tipo Euler- Maruyama baseado na discretização aleatória proposta por Leão e Ohashi (2013) sob a condição de Feller. Neste contexto, mostramos que esta aproximação possui uma ordem de convergência exponencial e utilizamos técnicas de simulação Monte Carlo para comparar resultados numéricos com valores teóricos. / In this master\'s thesis we work with Cox-Ingersoll-Ross (CIR) process. This process was originally proposed by John C. Cox, Jonathan E. Ingersoll Jr. and Stephen A. Ross in 1985. Nowadays, this process is widely used in financial modeling, e.g. as a model for short-time interest rates or as volatility process in the Heston model. The stochastic differential equation (SDE) which defines this model does not have closed form solution, so we need to approximate the process by some numerical method. In the literature, several numerical approximations has been proposed based in interval discretization. We approximate the CIR process by Euler-Maruyama-type method based in random discretization proposed by Leão e Ohashi (2013) under Feller condition. In this context, we obtain an exponential convergence order for this approximation and we use Monte Carlo techniques to compare the numerical results with theoretical values.
|
9 |
Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficientLeobacher, Gunther, Szölgyenyi, Michaela 01 1900 (has links) (PDF)
We prove strong convergence of order 1/4 - E for arbitrarily small E > 0 of
the Euler-Maruyama method for multidimensional stochastic differential equations
(SDEs) with discontinuous drift and degenerate diffusion coefficient. The proof is
based on estimating the difference between the Euler-Maruyama scheme and another
numerical method, which is constructed by applying the Euler-Maruyama scheme to
a transformation of the SDE we aim to solve.
|
10 |
Uma aproximação do tipo Euller - Maruyama para o processo de Cox-Ingersoll-Ross / An Euler-Maruyama-tupe method approach for the Cox-Ingersoll-RossRicardo Felipe Ferreira 26 February 2015 (has links)
Nesta dissertação de mestrado nós trabalhamos com o processo de Cox-Ingersoll- Ross, que foi originalmente proposto por John C. Cox, Jonathan E. Ingersoll Jr. e Stephen A. Ross em 1985. Este processo é amplamente utilizado em modelagem financeira, por exemplo, para descrever a evolução de taxas de juros ou como o processo de volatilidade no modelo de Heston. A equação diferencial estocástica que define este processo não possui solução fechada, logo faz-se necessária a aproximação do processo via algum método numérico. Na literatura diversos trabalhos propõem aproximações baseadas em esquemas de discretização intervalar. Nós aproximamos o processo de Cox-Ingersoll-Ross através de um método numérico do tipo Euler- Maruyama baseado na discretização aleatória proposta por Leão e Ohashi (2013) sob a condição de Feller. Neste contexto, mostramos que esta aproximação possui uma ordem de convergência exponencial e utilizamos técnicas de simulação Monte Carlo para comparar resultados numéricos com valores teóricos. / In this master\'s thesis we work with Cox-Ingersoll-Ross (CIR) process. This process was originally proposed by John C. Cox, Jonathan E. Ingersoll Jr. and Stephen A. Ross in 1985. Nowadays, this process is widely used in financial modeling, e.g. as a model for short-time interest rates or as volatility process in the Heston model. The stochastic differential equation (SDE) which defines this model does not have closed form solution, so we need to approximate the process by some numerical method. In the literature, several numerical approximations has been proposed based in interval discretization. We approximate the CIR process by Euler-Maruyama-type method based in random discretization proposed by Leão e Ohashi (2013) under Feller condition. In this context, we obtain an exponential convergence order for this approximation and we use Monte Carlo techniques to compare the numerical results with theoretical values.
|
Page generated in 0.045 seconds