• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Option pricing techniques under stochastic delay models

McWilliams, Nairn Anthony January 2011 (has links)
The Black-Scholes model and corresponding option pricing formula has led to a wide and extensive industry, used by financial institutions and investors to speculate on market trends or to control their level of risk from other investments. From the formation of the Chicago Board Options Exchange in 1973, the nature of options contracts available today has grown dramatically from the single-date contracts considered by Black and Scholes (1973) to a wider and more exotic range of derivatives. These include American options, which can be exercised at any time up to maturity, as well as options based on the weighted sums of assets, such as the Asian and basket options which we consider. Moreover, the underlying models considered have also grown in number and in this work we are primarily motivated by the increasing interest in past-dependent asset pricing models, shown in recent years by market practitioners and prominent authors. These models provide a natural framework that considers past history and behaviour, as well as present information, in the determination of the future evolution of an underlying process. In our studies, we explore option pricing techniques for arithmetic Asian and basket options under a Stochastic Delay Differential Equation (SDDE) approach. We obtain explicit closed-form expressions for a number of lower and upper bounds before giving a practical, numerical analysis of our result. In addition, we also consider the properties of the approximate numerical integration methods used and state the conditions for which numerical stability and convergence can be achieved.
2

ANALYSIS AND NUMERICAL APPROXIMATION OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH CONTINUOUSLY DISTRIBUTED DELAY

Gallage, Roshini Samanthi 01 August 2022 (has links) (PDF)
Stochastic delay differential equations (SDDEs) are systems of differential equations with a time lag in a noisy or random environment. There are many nonlinear SDDEs where a linear growth condition is not satisfied, for example, the stochastic delay Lotka-Volterra model of food chain discussed by Xuerong Mao and Martina John Rassias in 2005. Much research has been done using discrete delay where the dynamics of a process at time t depend on the state of the process in the past after a single fixed time lag \tau. We are researching processes with continuously distributed delay which depend on weighted averages of past states over the entire time lag interval [t-\tau,t].By using martingale concepts, we prove sufficient conditions for the existence of a unique solution, ultimate boundedness, and non-extinction of one-dimensional nonlinear SDDE with continuously distributed delay. We give generalized Khasminskii-type conditions which along with local Lipschitz conditions are sufficient to guarantee the existence of a unique global solution of certain n-dimensional nonlinear SDDEs with continuously distributed delay. Further, we give conditions under which Euler-Maruyama numerical approximations of such nonlinear SDDEs converge in probability to their exact solutions.We give some examples of one-dimensional and 2-dimensional stochastic differential equations with continuously distributed delay which satisfy the sufficient conditions of our theorems. Moreover, we simulate their solutions and analyze the error of approximation using MATLAB to implement the Euler-Maruyama algorithm.
3

A Stochastic Delay Model for Pricing Corporate Liabilities

Kemajou, Elisabeth 01 August 2012 (has links)
We suppose that the price of a firm follows a nonlinear stochastic delay differential equation. We also assume that any claim whose value depends on firm value and time follows a nonlinear stochastic delay differential equation. Using self-financed strategy and replication we are able to derive a random partial differential equation (RPDE) satisfied by any corporate claim whose value is a function of firm value and time. Under specific final and boundary conditions, we solve the RPDE for the debt value and loan guarantees within a single period and homogeneous class of debt. We then analyze the risk structure of a levered firm. We also evaluate loan guarantees in the presence of more than one debt. Furthermore, we perform numerical simulations for specific companies and compare our results with existing models.
4

Weak approxamation of stochastic delay

Lorenz, Robert 29 May 2006 (has links)
Wir betrachten die stochastische Differentialgleichung mit Gedächtnis (SDDE) mit Gedächtnislänge r dX(t) = b(X(u);u in [t-r,t])dt + sigma(X(u);u in [t-r,t])dB(t) mit eindeutiger schwacher Lösung. Dabei ist B eine Brownsche Bewegung, b and sigma sind stetige, lokal beschränkte Funktionen mit Definitionsbereich C[-r,0], und X(u);u in [t-r,t] bezeichnet das Segment der Werte von X(u) für Zeitpunkte u im Intervall [t,t-r]. Unser Ziel ist eine Folge von diskreten Zeitreihen Xh höherer Ordung zu konstruieren, so dass mit h gegen 0 die Zeitreihen Xh schwach gegen die Lösung X der stochastischen Differentialgleichung mit Gedächtnis konvergieren. Desweiteren werden wir Bedingungen angeben, unter denen eine gegeben Folge von Zeitreihen Xh höherer Ordung schwach gegen die Lösung X einer stochastischen Differentialgleichung mit Gedächtnis konvergiert. Als ein Beispiel werden wir den schwachen Grenzwert einer Folge von diskreten GARCH-Prozessen höherer Ordnung ermitteln. Dieser Grenzwert wird sich als schwache Lösung einer stochastischen Differentialgleichung mit Gedächtnis herausstellen. / Consider the stochastic delay differential equation (SDDE) with length of memory r dX(t) = b(X(u);u in [t-r,t])dt + sigma(X(u);u in [t-r,t])dB(t), which has a unique weak solution. Here B is a Brownian motion, b and sigma are continuous, locally bounded functions defined on the space C[-r,0], and X(u);u in [t-r,t] denotes the segment of the values of X(u) for time points u in the interval [t,t-r]. Our aim is to construct a sequence of discrete time series Xh of higher order, such that Xh converges weakly to the solution X of the stochastic differential delay equation as h tends to zero. On the other hand we shall establish under which conditions time series Xh of higher order converge weakly to a weak solution X of a stochastic differential delay equation. As an illustration we shall derive a weak limit of a sequence of GARCH processes of higher order. This limit tends out to be the weak solution of a stochastic differential delay equation.
5

Nonparametric estimation for stochastic delay differential equations

Reiß, Markus 13 February 2002 (has links)
Sei (X(t), t>= -r) ein stationärer stochastischer Prozess, der die affine stochastische Differentialgleichung mit Gedächtnis dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, löst, wobei sigma>0, (W(t), t>=0) eine Standard-Brownsche Bewegung und L ein stetiges lineares Funktional auf dem Raum der stetigen Funktionen auf [-r,0], dargestellt durch ein endliches signiertes Maß a, bezeichnet. Wir nehmen an, dass eine Trajektorie (X(t), -r 0, konvergiert. Diese Rate ist schlechter als in vielen klassischen Fällen. Wir beweisen jedoch eine untere Schranke, die zeigt, dass keine Schätzung eine bessere Rate im Minimax-Sinn aufweisen kann. Für zeit-diskrete Beobachtungen von maximalem Abstand Delta konvergiert die Galerkin-Schätzung immer noch mit obiger Rate, sofern Delta is in etwa von der Ordnung T^(-1/2). Hingegen wird bewiesen, dass für festes Delta unabhängig von T die Rate sich signifikant verschlechtern muss, indem eine untere Schranke von T^(-s/(2s+6)) gezeigt wird. Außerdem wird eine adaptive Schätzung basierend auf Wavelet-Thresholding-Techniken für das assoziierte schlechtgestellte Problem konstruiert. Diese nichtlineare Schätzung erreicht die obige Minimax-Rate sogar für die allgemeinere Klasse der Besovräume B^s_(p,infinity) mit p>max(6/(2s+3),1). Die Restriktion p>=max(6/(2s+3),1) muss für jede Schätzung gelten und ist damit inhärent mit dem Schätzproblem verknüpft. Schließlich wird ein Hypothesentest mit nichtparametrischer Alternative vorgestellt, der zum Beispiel für das Testen auf Gedächtnis verwendet werden kann. Dieser Test ist anwendbar für eine L^2-Trennungsrate zwischen Hypothese und Alternative der Ordnung T^(-s/(2s+2.5)). Diese Rate ist wiederum beweisbar optimal für jede mögliche Teststatistik. Für die Beweise müssen die Parameterabhängigkeit der stationären Lösungen sowie die Abbildungseigenschaften der assoziierten Kovarianzoperatoren detailliert bestimmt werden. Weitere Resultate von allgemeinem Interessen beziehen sich auf die Mischungseigenschaft der stationären Lösung, eine Fallstudie zu exponentiellen Gewichtsfunktionen sowie der Approximation des stationären Prozesses durch autoregressive Prozesse in diskreter Zeit. / Let (X(t), t>= -r) be a stationary stochastic process solving the affine stochastic delay differential equation dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, with sigma>0, (W(t), t>=0) a standard one-dimensional Brownian motion and with a continuous linear functional L on the space of continuous functions on [-r,0], represented by a finite signed measure a. Assume that a trajectory (X(t), -r 0. This rate is worse than those obtained in many classical cases. However, we prove a lower bound, stating that no estimator can attain a better rate of convergence in a minimax sense. For discrete time observations of maximal distance Delta, the Galerkin estimator still attains the above asymptotic rate if Delta is roughly of order T^(-1/2). In contrast, we prove that for observation intervals Delta, with Delta independent of T, the rate must deteriorate significantly by providing the rate estimate T^(-s/(2s+6)) from below. Furthermore, we construct an adaptive estimator by applying wavelet thresholding techniques to the corresponding ill-posed inverse problem. This nonlinear estimator attains the above minimax rate even for more general classes of Besov spaces B^s_(p,infinity) with p>max(6/(2s+3),1). The restriction p >= 6/(2s+3) is shown to hold for any estimator, hence to be inherently associated with the estimation problem. Finally, a hypothesis test with a nonparametric alternative is constructed that could for instance serve to decide whether a trajectory has been generated by a stationary process with or without time delay. The test works for an L^2-separation rate between hypothesis and alternative of order T^(-s/(2s+2.5)). This rate is again shown to be optimal among all conceivable tests. For the proofs, the parameter dependence of the stationary solutions has to be studied in detail and the mapping properties of the associated covariance operators have to be determined exactly. Other results of general interest concern the mixing properties of the stationary solution, a case study for exponential weight functions and the approximation of the stationary process by discrete time autoregressive processes.
6

Drift estimation for jump diffusions

Mai, Hilmar 08 October 2012 (has links)
Das Ziel dieser Arbeit ist die Entwicklung eines effizienten parametrischen Schätzverfahrens für den Drift einer durch einen Lévy-Prozess getriebenen Sprungdiffusion. Zunächst werden zeit-stetige Beobachtungen angenommen und auf dieser Basis eine Likelihoodtheorie entwickelt. Dieser Schritt umfasst die Frage nach lokaler Äquivalenz der zu verschiedenen Parametern auf dem Pfadraum induzierten Maße. Wir diskutieren in dieser Arbeit Schätzer für Prozesse vom Ornstein-Uhlenbeck-Typ, Cox-Ingersoll-Ross Prozesse und Lösungen linearer stochastischer Differentialgleichungen mit Gedächtnis im Detail und zeigen starke Konsistenz, asymptotische Normalität und Effizienz im Sinne von Hájek und Le Cam für den Likelihood-Schätzer. In Sprungdiffusionsmodellen ist die Likelihood-Funktion eine Funktion des stetigen Martingalanteils des beobachteten Prozesses, der im Allgemeinen nicht direkt beobachtet werden kann. Wenn nun nur Beobachtungen an endlich vielen Zeitpunkten gegeben sind, so lässt sich der stetige Anteil der Sprungdiffusion nur approximativ bestimmen. Diese Approximation des stetigen Anteils ist ein zentrales Thema dieser Arbeit und es wird uns auf das Filtern von Sprüngen führen. Der zweite Teil dieser Arbeit untersucht die Schätzung der Drifts, wenn nur diskrete Beobachtungen gegeben sind. Dabei benutzen wir die Likelihood-Schätzer aus dem ersten Teil und approximieren den stetigen Martingalanteil durch einen sogenannten Sprungfilter. Wir untersuchen zuerst den Fall endlicher Aktivität und zeigen, dass die Driftschätzer im Hochfrequenzlimes die effiziente asymptotische Verteilung erreichen. Darauf aufbauend beweisen wir dann im Falle unendlicher Sprungaktivität asymptotische Effizienz für den Driftschätzer im Ornstein-Uhlenbeck Modell. Im letzten Teil werden die theoretischen Ergebnisse für die Schätzer auf endlichen Stichproben aus simulierten Daten geprüft und es zeigt sich, dass das Sprungfiltern zu einem deutlichen Effizienzgewinn führen. / The problem of parametric drift estimation for a a Lévy-driven jump diffusion process is considered in two different settings: time-continuous and high-frequency observations. The goal is to develop explicit maximum likelihood estimators for both observation schemes that are efficient in the Hájek-Le Cam sense. The likelihood function based on time-continuous observations can be derived explicitly for jump diffusion models and leads to explicit maximum likelihood estimators for several popular model classes. We consider Ornstein-Uhlenbeck type, square-root and linear stochastic delay differential equations driven by Lévy processes in detail and prove strong consistency, asymptotic normality and efficiency of the likelihood estimators in these models. The appearance of the continuous martingale part of the observed process under the dominating measure in the likelihood function leads to a jump filtering problem in this context, since the continuous part is usually not directly observable and can only be approximated and the high-frequency limit. In the second part of this thesis the problem of drift estimation for discretely observed processes is considered. The estimators are constructed from discretizations of the time-continuous maximum likelihood estimators from the first part, where the continuous martingale part is approximated via a thresholding technique. We are able to proof that even in the case of infinite activity jumps of the driving Lévy process the estimator is asymptotically normal and efficient under weak assumptions on the jump behavior. Finally, the finite sample behavior of the estimators is investigated on simulated data. We find that the maximum likelihood approach clearly outperforms the least squares estimator when jumps are present and that the efficiency gap between both techniques becomes even more severe with growing jump intensity.
7

Study of Higher Order Split-Step Methods for Stiff Stochastic Differential Equations

Singh, Samar B January 2013 (has links) (PDF)
Stochastic differential equations(SDEs) play an important role in many branches of engineering and science including economics, finance, chemistry, biology, mechanics etc. SDEs (with m-dimensional Wiener process) arising in many applications do not have explicit solutions, which implies the development of effective numerical methods for such systems. For SDEs, one can classify the numerical methods into three classes: fully implicit methods, semi-implicit methods and explicit methods. In order to solve SDEs, the computation of Newton iteration is necessary for the implicit and semi-implicit methods whereas for the explicit methods we do not need such computation. In this thesis the common theme is to construct explicit numerical methods with strong order 1.0 and 1.5 for solving Itˆo SDEs. The five-stage Milstein(FSM)methods, split-step forward Milstein(SSFM)methods and M-stage split-step strong Taylor(M-SSST) methods are constructed for solving SDEs. The FSM, SSFM and M-SSST methods are fully explicit methods. It is proved that the FSM and SSFM methods are convergent with strong order 1.0, and M-SSST methods are convergent with strong order 1.5.Stiffness is a very important issue for the numerical treatment of SDEs, similar to the case of deterministic ordinary differential equations. Stochastic stiffness can lead someone to use smaller step-size for the numerical simulation of the SDEs. However, such issues can be handled using numerical methods with better stability properties. The analysis of stability (with multidimensional Wiener process) shows that the mean-square stable regions of the FSM methods are unbounded. The analysis of stability shows that the mean-square stable regions of the FSM and SSFM methods are larger than the Milstein and three-stage Milstein methods. The M-SSST methods possess large mean square stability region as compared to the order 1.5 strong Itˆo-Taylor method. SDE systems simulated with the FSM, SSFM and M-SSST methods show the computational efficiency of the methods. In this work, we also consider the problem of computing numerical solutions for stochastic delay differential equations(SDDEs) of Itˆo form with a constant lag in the argument. The fully explicit methods, the predictor-corrector Euler(PCE)methods, are constructed for solving SDDEs. It is proved that the PCE methods are convergent with strong order γ = ½ in the mean-square sense. The conditions under which the PCE methods are MS-stable and GMS-stable are less restrictive as compared to the conditions for the Euler method.

Page generated in 0.1425 seconds