• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 17
  • Tagged with
  • 123
  • 114
  • 42
  • 41
  • 39
  • 39
  • 38
  • 38
  • 31
  • 21
  • 15
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Visualization of Protein Activity Status in situ Using Proximity Ligation Assays

Jarvius, Malin January 2010 (has links)
In 2001 the human proteome organization (HUPO) was created with the ambition to identify and characterize all proteins encoded in the human genome according to several criteria; their expression levels in different tissues and under different conditions; the sub-cellular localization; post-translational modifications; interactions, and if possible also the relationship between their structure and function.When the knowledge of different proteins and their potential interactions increases, so does the need for methods able to unravel the nature of molecular processes in cells and organized tissues, and ultimately for clinical use in samples obtained from patients. The in situ proximity ligation assay (in situ PLA) was developed to provide localized detection of proteins, post-translational modifications and protein-protein interactions in fixed cells and tissues. Dual recognition of the target or interacting targets is a prerequisite for the creation of a circular reporter DNA molecule, which subsequently is locally amplified for visualization of individual protein molecules in single cells. These features offer the high sensitivity and selectivity required for detection of even rare target molecules. Herein in situ PLA was first established and then employed as a tool for detection of both interactions and post-translational modifications in cultured cells and tissue samples. In situ PLA was also adapted to high content screening (HCS) for therapeutic effects, where it was applied for cell-based drug screening of inhibitors influencing post-translational modifications. This was performed using primary cells, paving the way for evaluation of drug effects on cells from patient as a diagnostic tool in personalized medicine. In conclusion, this thesis describes the development and applications of in situ PLA as a tool to study proteins, post-translational modifications and protein-protein interactions in genetically unmodified cells and tissues, and for clinical interactomics.
122

Brain processing of experimental muscle pain and its interrelation with proprioception and muscle fatigue : positron emission tomography study /

Korotkov, Alexander January 2005 (has links) (PDF)
Diss. (sammanfattning) Umeå : Univ., 2005. / Härtill 5 uppsatser.
123

Extracellular Matrix Based Materials for Tissue Engineering

Aulin, Cecilia January 2010 (has links)
The extracellular matrix is (ECM) is a network of large, structural proteins and polysaccharides, important for cellular behavior, tissue development and maintenance. Present thesis describes work exploring ECM as scaffolds for tissue engineering by manipulating cells cultured in vitro or by influencing ECM expression in vivo. By culturing cells on polymer meshes under dynamic culture conditions, deposition of a complex ECM could be achieved, but with low yields. Since the major part of synthesized ECM diffused into the medium the rate limiting step of deposition was investigated. This quantitative analysis showed that the real rate limiting factor is the low proportion of new proteins which are deposited as functional ECM. It is suggested that cells are pre-embedded in for example collagen gels to increase the steric retention and hence functional deposition. The possibility to induce endogenous ECM formation and tissue regeneration by implantation of growth factors in a carrier material was investigated. Bone morphogenetic protein-2 (BMP-2) is a growth factor known to be involved in growth and differentiation of bone and cartilage tissue. The BMP-2 processing and secretion was examined in two cell systems representing endochondral (chondrocytes) and intramembranous (mesenchymal stem cells) bone formation. It was discovered that chondrocytes are more efficient in producing BMP-2 compared to MSC. The role of the antagonist noggin was also investigated and was found to affect the stability of BMP-2 and modulate its effect. Finally, an injectable gel of the ECM component hyaluronan has been evaluated as delivery vehicle in cartilage regeneration. The hyaluronan hydrogel system showed promising results as a versatile biomaterial for cartilage regeneration, could easily be placed intraarticulary and can be used for both cell based and cell free therapies.

Page generated in 0.0331 seconds