• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 17
  • 15
  • 13
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Examination of the Regulation of Phosphorylation Events in Macrophage Adhesion and Response to Zymosan

St-Pierre, Joëlle Unknown Date
No description available.
2

Understanding how focal adhesion proteins sense and respond to mechanical signals

Stutchbury, Benjamin January 2016 (has links)
The mechanical properties of the tissue vary widely around the body, from the soft brain to the rigid bone. Tissue cells are able to sense mechanical signals from their environment, which influence many aspects of cell behaviour such as migration, proliferation and differentiation. Focal adhesions (FAs) are large protein complexes that form the bridge between the extracellular matrix (ECM)-binding integrins and the contractile actin cytoskeleton. Here, they sense the rigidity of the local environment and translate this information into a cellular response, a process known as mechanotransduction. However, the FA proteins required for mechanotransduction, and the molecular mechanisms involved in this fundamental process, remain to be elucidated. Talin, vinculin, FAK and paxillin are four core FA-associated proteins that are thought to be involved in mechanotransduction. These proteins associate and dissociate from the complex in a constant state of flux. Using a live-cell imaging approach, I found that the rate of dynamic exchange of an FA protein correlates to its function. The FA appears to have a modular organisation; the slowest proteins have a structural role, such as talin and vinculin, responsible for directly linking integrin to actin and sensing the ECM stiffness. The signalling proteins are turned over more rapidly, including FAK and paxillin, and are responsible for directing the cellular response to force-generated signals from the ECM.The second results chapter focused on the force-dependent interactions between talin, vinculin and actin. The talin domains R2R3 were identified as the key mechanosensitive vinculin-binding sites, which are exposed upon the application of force across the talin rod. Vinculin binding to R2R3 led to actin associating with the central actin-binding site in the talin rod (ABS2), which is required for the transmission of actomyosin tension onto the underlying substrate as cellular traction force. Finally, the protein turnover data were incorporated into two mathematical models, describing talin and vinculin turnover, which were able to simulate the dynamic exchange of various talin and vinculin mutants in response to changing ECM stiffness. Using these models, the talin ABS2-actin and vinculin tail-actin interactions were found to be extremely important for sensing the stiffness of the ECM. These findings significantly increase our knowledge of the molecular mechanisms underpinning cellular mechanotransduction. Increased understanding of how mechanical signals are sensed and interpreted by the cell could lead to a number of novel therapies for a wide range of associated diseases, such as atherosclerosis, muscular dystrophy and cancer.
3

SLK-mediated Phosphorylation of Paxillin Is Required for Focal Adhesion Turnover and Cell Migration

Jennifer Leigh, Quizi 13 December 2011 (has links)
The precise mechanism regulating focal adhesion disassembly has yet to be elucidated. Recently, we have implicated the Ste20-like kinase SLK in mediating efficient focal adhesion turnover and cell migration in a Rac-1 and FAK-dependent manner. Although an indirect association of this kinase with the microtubule network has been determined, the exact involvement of SLK in the disassembly of the adhesion complex remains unclear. With the identification of the focal adhesion protein paxillin as a substrate of SLK, we show that SLK regulates adhesion turnover through its phosphorylation at S250. Mutation of S250 to a threonine residue ablates SLK phosphorylation of paxillin in vitro and results in reduced adhesion turnover and migration in vivo. Additionally, our studies demonstrate that overexpression of the paxillin S250T mutation prevents the redistribution of paxillin to the membrane ruffle in migrating cells. The complete loss of polyubiquitylation in the S250T mutant, combined with no observed reduction in S250T protein expression, suggests that S250 phosphorylation is required for a ubiquitin-mediated modification that regulates paxillin redistribution within the cell. Moreover, we show that phosphorylation of S250 is required for paxillin to interact with FAK. An observed accumulation of phospho-FAKY397 in cells overexpressing the paxillin S250T mutant suggests that phosphorylation of S250 is involved in regulating FAK-dependent focal adhesion dynamics. Consequently, our data suggests that SLK regulates adhesion turnover through the phosphorylation of paxillin at S250.
4

SLK-mediated Phosphorylation of Paxillin Is Required for Focal Adhesion Turnover and Cell Migration

Jennifer Leigh, Quizi 13 December 2011 (has links)
The precise mechanism regulating focal adhesion disassembly has yet to be elucidated. Recently, we have implicated the Ste20-like kinase SLK in mediating efficient focal adhesion turnover and cell migration in a Rac-1 and FAK-dependent manner. Although an indirect association of this kinase with the microtubule network has been determined, the exact involvement of SLK in the disassembly of the adhesion complex remains unclear. With the identification of the focal adhesion protein paxillin as a substrate of SLK, we show that SLK regulates adhesion turnover through its phosphorylation at S250. Mutation of S250 to a threonine residue ablates SLK phosphorylation of paxillin in vitro and results in reduced adhesion turnover and migration in vivo. Additionally, our studies demonstrate that overexpression of the paxillin S250T mutation prevents the redistribution of paxillin to the membrane ruffle in migrating cells. The complete loss of polyubiquitylation in the S250T mutant, combined with no observed reduction in S250T protein expression, suggests that S250 phosphorylation is required for a ubiquitin-mediated modification that regulates paxillin redistribution within the cell. Moreover, we show that phosphorylation of S250 is required for paxillin to interact with FAK. An observed accumulation of phospho-FAKY397 in cells overexpressing the paxillin S250T mutant suggests that phosphorylation of S250 is involved in regulating FAK-dependent focal adhesion dynamics. Consequently, our data suggests that SLK regulates adhesion turnover through the phosphorylation of paxillin at S250.
5

Genomic Characterization of Pleural Solitary Fibrous Tumours

Allo, Ghassan 11 July 2013 (has links)
Pleural solitary fibrous tumours (pSFTs) are uncommon soft tissue tumours of the pleura. that may recur and contribute to the patients’ demise. We analyzed a group of benign and malignant pSFTs for copy number alterations and for common mutations in oncogenes and tumour-suppressor genes. Malignant SFTs demonstrated more copy number alterations, especially 8q (c-myc) gain, 10q (include PTEN) loss, and 13q (Rb1) loss. Mutations were rare in this limited study.
6

Genomic Characterization of Pleural Solitary Fibrous Tumours

Allo, Ghassan 11 July 2013 (has links)
Pleural solitary fibrous tumours (pSFTs) are uncommon soft tissue tumours of the pleura. that may recur and contribute to the patients’ demise. We analyzed a group of benign and malignant pSFTs for copy number alterations and for common mutations in oncogenes and tumour-suppressor genes. Malignant SFTs demonstrated more copy number alterations, especially 8q (c-myc) gain, 10q (include PTEN) loss, and 13q (Rb1) loss. Mutations were rare in this limited study.
7

SLK-mediated Phosphorylation of Paxillin Is Required for Focal Adhesion Turnover and Cell Migration

Jennifer Leigh, Quizi 13 December 2011 (has links)
The precise mechanism regulating focal adhesion disassembly has yet to be elucidated. Recently, we have implicated the Ste20-like kinase SLK in mediating efficient focal adhesion turnover and cell migration in a Rac-1 and FAK-dependent manner. Although an indirect association of this kinase with the microtubule network has been determined, the exact involvement of SLK in the disassembly of the adhesion complex remains unclear. With the identification of the focal adhesion protein paxillin as a substrate of SLK, we show that SLK regulates adhesion turnover through its phosphorylation at S250. Mutation of S250 to a threonine residue ablates SLK phosphorylation of paxillin in vitro and results in reduced adhesion turnover and migration in vivo. Additionally, our studies demonstrate that overexpression of the paxillin S250T mutation prevents the redistribution of paxillin to the membrane ruffle in migrating cells. The complete loss of polyubiquitylation in the S250T mutant, combined with no observed reduction in S250T protein expression, suggests that S250 phosphorylation is required for a ubiquitin-mediated modification that regulates paxillin redistribution within the cell. Moreover, we show that phosphorylation of S250 is required for paxillin to interact with FAK. An observed accumulation of phospho-FAKY397 in cells overexpressing the paxillin S250T mutant suggests that phosphorylation of S250 is involved in regulating FAK-dependent focal adhesion dynamics. Consequently, our data suggests that SLK regulates adhesion turnover through the phosphorylation of paxillin at S250.
8

Mechanism of adhesion assembly and adhesion turnover regulation in migrating cells /

Nayal, Anjana. January 2006 (has links)
Thesis (Ph. D.)--University of Virginia, 2006. / Includes bibliographical references. Also available online through Digital Dissertations.
9

SLK-mediated Phosphorylation of Paxillin Is Required for Focal Adhesion Turnover and Cell Migration

Jennifer Leigh, Quizi January 2012 (has links)
The precise mechanism regulating focal adhesion disassembly has yet to be elucidated. Recently, we have implicated the Ste20-like kinase SLK in mediating efficient focal adhesion turnover and cell migration in a Rac-1 and FAK-dependent manner. Although an indirect association of this kinase with the microtubule network has been determined, the exact involvement of SLK in the disassembly of the adhesion complex remains unclear. With the identification of the focal adhesion protein paxillin as a substrate of SLK, we show that SLK regulates adhesion turnover through its phosphorylation at S250. Mutation of S250 to a threonine residue ablates SLK phosphorylation of paxillin in vitro and results in reduced adhesion turnover and migration in vivo. Additionally, our studies demonstrate that overexpression of the paxillin S250T mutation prevents the redistribution of paxillin to the membrane ruffle in migrating cells. The complete loss of polyubiquitylation in the S250T mutant, combined with no observed reduction in S250T protein expression, suggests that S250 phosphorylation is required for a ubiquitin-mediated modification that regulates paxillin redistribution within the cell. Moreover, we show that phosphorylation of S250 is required for paxillin to interact with FAK. An observed accumulation of phospho-FAKY397 in cells overexpressing the paxillin S250T mutant suggests that phosphorylation of S250 is involved in regulating FAK-dependent focal adhesion dynamics. Consequently, our data suggests that SLK regulates adhesion turnover through the phosphorylation of paxillin at S250.
10

A role of actin-regulatory proteins in the formation of needle-shaped spores in the filamentous fungus Ashbya gossypii

Lickfeld, Manuela 21 May 2012 (has links)
Spore formation is an essential step in the fungal life cycle that contributes to the dispersal of the organism and also to survival under harsh environmental conditions. The morphology of spores shows an astonishing diversity in the fungal kingdom and varies from very simple round and small spores to very complex multi-armed or sigmoid structures. With exception of the regulation of ascospore formation in Saccharomyces cerevisiae and Schizosaccharomyces pombe, which are well-characterized model organisms for spore development in fungi, little is currently known about the regulation of more complex spore morphologies. In this study, the filamentous ascomycete Ashbya gossypii is used as a model system for the investigation of a complex and composite spore morphology. A. gossypii produces linear, needle-shaped spores possessing a length of 30 µm, which can be divided into three major segments: a rigid tip segment, a more fragile membrane compartment and a stable tail-cap. Furthermore, the different compartments were shown to correlate with distinct materials. While the tip segment and the tail-cap of the spores consist of stabilizing materials like chitin and chitosan, these materials are absent from the compartment in the middle. The actin cytoskeleton plays an essential role in several steps of spore formation in A. gossypii. Different regions of actin accumulation were identified that directly correlate with the developing spores. Especially the developing tip segment is characterized by heavy-bundled linear actin structures. Furthermore, proteins of the formin family, a class of actin organizing proteins, were identified to be directly involved in spore formation in A. gossypii. The formin AgBnr2 fulfills an actin-related key function during spore development by linking actin to the spindle pole body during sporulation. Downregulation of AgBNR2 leads to severe sporulation defects, indicating a central function in spore development. Moreover, AgBni1, another representative of the formin family, also has a regulatory function in size determination of the typical needle-shaped spores of A. gossypii. Using a modified yeast two-hybrid approach, four potential activators of the formin AgBni1 were identified: the Rho-type GTPases AgRho1a, AgRho1b, AgRho3 and AgRho4. The interaction of AgBni1 with the two Rho1 GTPases plays an important role during spore development. In this study, the Rho binding domain of AgBni1 was further examined to identify amino acids that are essential for the interaction with the Rho-type GTPases. Using random mutagenesis combined with a two-hybrid screen, the point mutation S250P in the Rho binding domain of AgBni1 was identified to reduce the interaction of the formin with the Rho1 GTPases. Integration of AgBni1 S250P causes an increase in spore length, suggesting a direct effect of this signaling pathway in spore length determination. An actin-regulating protein network that includes the formin AgBni1, the Rho-type GTPases AgRho1a and AgRho1b and the paxillin-like protein AgPxl1 was identified to be mainly involved in the regulation of the spore length. Thereby, this network seems to be involved in the arrangement of the different spore compartments via the actin cytoskeleton.

Page generated in 0.0493 seconds