• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchungen zur Bedeutung verschiedener Enzyme des Glycin-Stoffwechsels für die Riboflavin-Bildung in Ashbya gossypii

Schlüpen, Christina. January 2003 (has links)
Düsseldorf, Universiẗat, Diss., 2003.
2

The Contribution of Horizontal Gene Transfer to the Evolution of Fungi

Hall, Charles Robert, January 2007 (has links) (PDF)
Thesis (Ph. D.)--Duke University, 2007. / Includes bibliographical references.
3

A role of actin-regulatory proteins in the formation of needle-shaped spores in the filamentous fungus Ashbya gossypii

Lickfeld, Manuela 21 May 2012 (has links)
Spore formation is an essential step in the fungal life cycle that contributes to the dispersal of the organism and also to survival under harsh environmental conditions. The morphology of spores shows an astonishing diversity in the fungal kingdom and varies from very simple round and small spores to very complex multi-armed or sigmoid structures. With exception of the regulation of ascospore formation in Saccharomyces cerevisiae and Schizosaccharomyces pombe, which are well-characterized model organisms for spore development in fungi, little is currently known about the regulation of more complex spore morphologies. In this study, the filamentous ascomycete Ashbya gossypii is used as a model system for the investigation of a complex and composite spore morphology. A. gossypii produces linear, needle-shaped spores possessing a length of 30 µm, which can be divided into three major segments: a rigid tip segment, a more fragile membrane compartment and a stable tail-cap. Furthermore, the different compartments were shown to correlate with distinct materials. While the tip segment and the tail-cap of the spores consist of stabilizing materials like chitin and chitosan, these materials are absent from the compartment in the middle. The actin cytoskeleton plays an essential role in several steps of spore formation in A. gossypii. Different regions of actin accumulation were identified that directly correlate with the developing spores. Especially the developing tip segment is characterized by heavy-bundled linear actin structures. Furthermore, proteins of the formin family, a class of actin organizing proteins, were identified to be directly involved in spore formation in A. gossypii. The formin AgBnr2 fulfills an actin-related key function during spore development by linking actin to the spindle pole body during sporulation. Downregulation of AgBNR2 leads to severe sporulation defects, indicating a central function in spore development. Moreover, AgBni1, another representative of the formin family, also has a regulatory function in size determination of the typical needle-shaped spores of A. gossypii. Using a modified yeast two-hybrid approach, four potential activators of the formin AgBni1 were identified: the Rho-type GTPases AgRho1a, AgRho1b, AgRho3 and AgRho4. The interaction of AgBni1 with the two Rho1 GTPases plays an important role during spore development. In this study, the Rho binding domain of AgBni1 was further examined to identify amino acids that are essential for the interaction with the Rho-type GTPases. Using random mutagenesis combined with a two-hybrid screen, the point mutation S250P in the Rho binding domain of AgBni1 was identified to reduce the interaction of the formin with the Rho1 GTPases. Integration of AgBni1 S250P causes an increase in spore length, suggesting a direct effect of this signaling pathway in spore length determination. An actin-regulating protein network that includes the formin AgBni1, the Rho-type GTPases AgRho1a and AgRho1b and the paxillin-like protein AgPxl1 was identified to be mainly involved in the regulation of the spore length. Thereby, this network seems to be involved in the arrangement of the different spore compartments via the actin cytoskeleton.
4

Vergleichende Untersuchungen der molekularen Mechanismen der Endozytose in langsam und schnell wachsenden Zellen

Nordmann, Doris 29 May 2015 (has links)
In schnell wachsenden Hyphen des filamentösen Pilzes Ashbya gossypii ist die Oberflächenvergrößerung bis zu 40-fach höher, als in den Knospen des nah verwandten Pilzes Saccharomyces cerevisiae. Um die Wachstumszonen auf die Hyphenspitzen zu begrenzen, müssen Polaritätsfaktoren wie Rezeptoren und Sensoren, sowie überschüssiges Membranmaterial in subapikalen Bereichen von der Zelloberfläche entfernt werden. Dies wird durch den Prozess der Endozytose erreicht. In S. cerevisiae ist der Hauptendozytoseweg die Clathrin- und Aktin-abhängige Endozytose und der Prozess ist bereits gut charakterisiert. A. gossypii besitzt Homologe zu fast allen Komponenten dieser endozytischen Maschinerie und ist daher besonders gut geeignet die Anpassung des endozytischen Prozesses an schnelles, polares Wachstum zu untersuchen. Um die Endozytose während des polaren Hyphenwachstums zu analysieren, wurden neun homologe Proteine des aus S. cerevisiae bekannten Endozytosemechanismus mittels „live cell imaging“ und TIRF-Mikroskopie sowohl in langsam, als auch in schnell wachsenden Hyphen untersucht. Hierbei zeigte sich, dass die Endozytoserate in den schnell wachsenden Hyphen in A. gossypii im Vergleich zu Hefe-Zellen deutlich erhöht ist. Dies wird sowohl durch die Beschleunigung des endozytischen Prozesses, als auch durch eine erhöhte Anzahl an endozytischen Ereignissen pro µm2 Zelloberfläche erreicht. Die fluoreszenzmikroskopischen Analysen zeigten zudem, dass sich die Endozytosezone bei hoher Wachstumsgeschwindigkeit um ca. 3 µm in den hinteren Hyphenbereich verlagert. Ein wesentlicher Unterschied des endozytischen Prozesses in A. gossypii im Vergleich zu S. cerevisiae ist die Funktion von Clathrin. Clathrin kolokalisierte mit keiner der getesteten endozytischen Komponenten und konnte ausschließlich an zellinternen Strukturen detektiert werden. Dies deutet darauf hin, dass Clathrin bei der Endozytose in A. gossypii keine Rolle spielt und seine Funktion auf interne Kompartimente wie die Endosomen oder das Golgi-Netzwerk beschränkt ist. Die Unterschiede in der Clathrin-Funktion zwischen S. cerevisiae und A. gossypii hängen vermutlich mit einer minimalen Abweichung im Genset endozytischer Komponenten in A. gossypii zusammen. So besitzt A. gossypii kein Homologes zu ScSla2, welches in Hefe sowohl mit Clc1, als auch mit dem Aktin-Zytoskelett interagiert. Der Sequenzvergleich der Clc1-Proteine aus S. cerevisiae und A. gossypii zeigt, dass in AgClc1 die Sla2-Bindedomäne fehlt. Mittels eines Komplementationstests konnte nachgewiesen werden, dass die Fusion dieser Bindedomäne an das AgCLC1-Gen ausreicht, um die endozytische Funktion von Clathrin in S. cerevisiae wieder herzustellen. In S. cerevisiae führt die Interaktion von Sla2 und Clc1 zu einer verminderten Aktin-Anlagerung an das entstehende Vesikel und dient als Regulationsmechanismus für die Membraneinstülpung. Das Fehlen dieses Mechanismus könnte in A. gossypii die Membraneinstülpung durch vermehrte Aktin-Anlagerung beschleunigen und auf diese Weise zur Anpassung an das schnelle Hyphenwachstum beitragen.
5

UNDERSTANDING THE MECHANISM OF MOTILITY OF THE HETERODIMERIC KINESIN-14 KAR3VIK1

Duan, DA 23 July 2013 (has links)
The kinesin-14 Kar3 from Saccharomyces cerevisiae (Sc) is a C-terminal motor that forms a heterodimer with the kinesin-accessory protein Vik1. Although Vik1 possesses a typical kinesin motor domain (MD) fold, it lacks a nucleotide-binding site. However, it binds microtubules with affinities that can be regulated Kar3’s nucleotide state. This implies intermolecular communication between its subunits. This thesis aimed to understand this communication by studying the structures and functions of Kar3Vik1 orthologs. First, we biochemically characterized Kar3 from Ashbya gossypii (Ag) and determined the crystal structure of its MD. It was shown that the active site features of the AgKar3MD are similar to that of the ScKar3 R598A mutant, and that the β1 lobe at the edge of the MD was unique in structure and amino acid content. These results may provide a rationale for the unique enzymatic properties of this motor that could be relevant to its interaction with AgVik1 and function in Ashbya gossypii. We also determined the crystal structures of Kar3 and Vik1 orthologs from Candida glabrata (Cg). While the CgKar3MD structure was very similar to that of ScKar3MD, crystals of CgVik1 captured three novel conformations of the Vik1 motor homology domain (MHD). We observed that when the N-terminal neck helix docks against the MHD core in two unique positions, the C-terminus resembling neck mimics of kinesin-14 motors also docks against the neck-core junction. However, when the neck is non-helical and disengaged from the MHD, the C-terminus is undocked and disordered. To assess the functional importance of these N- and C-terminal segments of Vik1 MHD, we created CgKar3Vik1 constructs whose Vik1 subunit contained either a point mutation or complete truncation of the C-terminus (neck mimic), and analyzed their biophysical properties. All mutants showed defective ATPase activity and microtubule-gliding ability. Characterization of the mutations in CgVik1MHD by molecular dynamics simulations showed that residues Ile578 and Asn580 are not only involved in stabilizing interactions between the neck and neck mimic but they also influence and respond to conformational changes of the neck. These observations implicate the N- and C-termini of Vik1 as a key element of Kar3Vik1 function and communication. / Thesis (Ph.D, Biochemistry) -- Queen's University, 2013-07-23 10:31:52.885
6

Interaktionen von Forminen mit dem Aktinzytoskelett und ihre Rolle für die Entwicklung des filamentösen Pilzes Ashbya gossypii

Kemper, Michael 11 December 2009 (has links)
Formine sind an einer Vielzahl physiologischer Prozesse, wie u. a. der Zytokinese, Endozytose oder auch der Vermittlung von Zellpolarität beteiligt, da sie Schlüsselregulatoren des Aktin- und Mikrotubulizytoskeletts sind. Durch carboxyterminale Formin-Homologie (FH)-Domänen wird die Bildung von Aktinfilamenten vermittelt. Unabhängig davon konnte für einige Formine eine Beteiligung an der Mikrotubulidynamik nachgewiesen werden.Das Genom des filamentösen Pilz Ashbya gossypii codiert für die drei Formine: AgBNI1, AgBNR1 und AgBNR2. Im Fokus der Arbeit stand die Aufklärung der molekularen und zellulären Funktion von AgBnr2. Mit biochemischen Versuchen zur molekularen Analyse konnte sowohl die Fähigkeit zur Aktinpolymerisierung, als auch zur Co-Sedimentierung mit Mikrotubuli für die carboxyterminalen FH-Domänen von AgBnr2 gezeigt werden. Mit Hilfe von in vivo Experimenten, wie Mutantenanalyse, Co-Lokalisierungsstudien und Hefe 2-Hybrid Versuchen konnten die Ergebnisse bestätigt werden. Nach der Repression von AgBNR2 in einem Agbnr1 Deletionsstamm konnten Sporulationsdefekte beobachtet werden. Für das Formin AgBnr2 konnte weiterhin die Wechselwirkung und Co-Lokalisierung mit dem Homolog des sporulationsspezifischen Proteins ScSpo21 nachgewiesen werden, was auf eineBeteiligung des Formins an der Sporulation hindeutet. Durch mikroskopische Untersuchungen und in vitro Versuchen mit gereinigten Zellkernen wurde der Nachweis erbracht, dass AgBnr2 während der Sporulation Aktinfilamente am Zellkern polymerisieren kann.Die Ergebnisse enden in dem Modell zur Bnr-vermittelten Verankerung von Aktinfilamenten am Zellkern. Die Filamente dienen während der Sporenbildung möglicherweise dem Transport von Vorläufervesikeln, die u. a. zur Bildung der Prosporenmembran genutzt werden. Dieses Modell scheint innerhalb der Hemiascomyceten Gültigkeit zu besitzen. Ergänzende Versuche mit ScBnr1 aus S. cerevisiae, dem Homolog zu AgBnr2, weisen auf eine konservierte Funktion der Bnr-Formine hin.

Page generated in 0.3279 seconds