• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 24
  • Tagged with
  • 59
  • 59
  • 48
  • 43
  • 34
  • 33
  • 33
  • 30
  • 25
  • 25
  • 18
  • 18
  • 16
  • 15
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charakterisierung der TOR-Komplexe in Schizosaccharomyces pombe

von Coelln, Gesa 18 February 2010 (has links)
Zellen sind darauf angewiesen, ihre Lebensbedingungen wahrzunehmen und darauf zu reagieren. Der TOR („Target of Rapamycin“)-Signalweg spielt dabei eine wichtige Rolle, indem er das Wachstum in Abhängigkeit von Nährstoffen und Hormonen reguliert. In dieser Arbeit wurde die Spalthefe Schizosaccharomyces pombe (S. pombe) als Modellorganismus für die Untersuchungen des TOR-Signalweges verwendet. Dabei zeigte sich, dass in S. pombe, wie in Säugern und der Bäckerhefe, zwei TOR-Komplexe existieren. Ko-Immunpräzipitationsexperimente zeigten, dass sich der TOR-Komplex 1 aus SpTor2, SpMip1 und SpWat1 zusammensetzt. Bei SpTor1, SpSin1, SpSte20 und SpWat1 handelt es sich um Mitglieder des TOR-Komplex 2. Phänotypische Analysen von Mutanten in Genen, die für TOR-Komplex 2-Komponenten kodieren, unterstreichen, dass diese Proteine in der Zelle ähnliche Funktionen bei der Antwort auf verschiedene Stresssituationen ausüben. Die heterologe Expression von wat1+ in einer S. cerevisiae delta lst8-Mutante komplementiert deren Wachstumsdefekt, was untermauert, dass diese beiden Proteine tatsächlich gleiche Funktionen in der Zelle ausüben. Eine Membranassoziation der TOR-Komplexe, wie sie in Säugern und S. cerevisiae bereits beschrieben wurde, konnte in dieser Arbeit für die TOR-Komplex 2-Komponente SpSte20 nachgewiesen werden. Möglicherweise spielt dabei die Interaktion zwischen der leichten Kette des Clathrins mit SpSte20 eine Rolle. Auch für die homologen Proteine aus S. cerevisiae, ScCLC1 und ScAVO3, konnte mittels des "Zwei-Hybrid"-Systems eine Bindung nachgewiesen werden. Dieses deutet eine Konservierung dieser Proteininteraktion innerhalb von Eukaryonten an. Obwohl das vegetative Wachstum von S. pombe durch Rapamycin nicht gehemmt wird, zeigen die hier aufgeführten Daten eine in vivo-Bindung von SpFkh1 an sowohl SpTor1 als auch SpTor2 in Anwesenheit von Rapamycin. Das Phosphorylierungslevel von SpGad8, dem bisher einzigen postulierten TOR-Komplex 2-Zielprotein, wird durch die Bindung des SpFkh1-Rapamycin-Komplexes an SpTor1 jedoch nicht beeinflusst. Dies und die Tatsache, dass delta gad8-Mutanten ein Rapamycin-sensitives Wachstum zeigen, lassen vermuten, dass noch weitere bisher unbekannte SpTOR-Komplex-Zielproteine durch Rapamycin beeinflusst werden. Zusammengenommen unterstreichen die Daten dieser Arbeit die Konservierung der Komplexe und des von ihnen vermittelten Signaltransduktionsweges. Sie zeigen aber auch, dass die Wirkung von Rapamycin nicht einfach durch eine generelle Hemmung der Aktivität der Komplexe beschrieben werden kann, was insbesondere für die klinische Anwendung von Rapamycin von Bedeutung ist.
2

Regulation of type II interleukin-4 receptor assembly and signaling by ligand binding kinetics and affinities

Richter, David 19 June 2017 (has links)
Cytokines activate cell surface receptors to control and regulate immunity and hematopoiesis. Despite its enormous potential, pharmaceutical use of cytokines is in most cases hampered by their pleiotropic functionality, which renders cytokine-based therapies exceptionally difficult to control. Although there is growing evidence that the functional plasticity of cytokine receptors is largely encoded in the spatiotemporal dynamics of receptor complexes, no mechanistic correlation has hitherto been achieved. Two related aspects, the spatiotemporal organization and the activation mechanism of cytokine receptors in the plasma membrane, have further remained a topic of intensive and controversial debate. To shed to light into the mechanistic principles responsible for functional selectivity, this thesis aimed to quantitatively explore the molecular and cellular determinants governing cytokine receptor assembly and signaling using the type II interleukin-4 (IL-4) receptor as model system. To this end, by taking advantage of IL-4 and interleukin 13 (IL-13) agonists binding the receptor subunits IL-4Rα and IL-13Rα1 with different affinities and rate constants, an in vitro kinetic characterization of the receptor system was combined with live cell microscopy on the single molecule level and flow cytometry as well as in silico modeling approaches. The quantification of kinetics by a dedicated solid-phase detection method with the extracellular receptor domains tethered onto artificial membranes confirmed that the affinity and stability of the two-dimensional molecular interactions determine receptor dimerization levels and dynamics. Single molecule localization microscopy at physiological cell surface expression levels, however, revealed efficient ligand-induced receptor dimerization, largely independent of the two-dimensional receptor binding affinities, in line with similar STAT6 activation potencies observed for different IL-4 variants. Detailed spatiotemporal analyses and single molecule co-tracking of receptor subunits and ligands in conjunction with spatial-stochastic modeling identified confinement by actin-dependent membrane micro-compartments as an important cellular determinant for sustaining transient receptor dimers. By correlating downstream cellular responses with various three-dimensional binding affinities and kinetics of engineered IL-13 variants, distinct roles of ligand association and dissociation kinetics were uncovered. Whereas the extent of membrane-proximal effector activation is dependent on the association rate by controlling the number of formed receptor complexes in the plasma membrane, the lifetime of receptor complexes determines the potency of a ligand for inducing more distal responses and is, due to accumulation of signaling complexes in endosomes, directly connected to the kinetics of early signaling events.
3

Identification of novel physiological processes regulated by Neprilysin activity in Drosophila melanogaster

Hallier, Benjamin Christoph 19 June 2017 (has links)
Drosophila insulin like peptides (DILPs) and their human homolog insulin act as messengers to control many physiological processes in the body. Fields in which insulin signaling is crucial are e.g. growth, stress responses and aging. Consequently, many diseases are caused by disturbed insulin signaling, of which diabetes is the most prominent. During the last decades the functions of insulins and their signaling pathways have been studied in detail; what remains less well understood is how the production of insulin and insulin like peptides is regulated. The family of Neprilysins (Neps) belongs to the M13-zinc ion binding metallopeptidases. Neprilysins cleave peptides that regulate a wide range of cellular processes and are therefore linked to a variety of diseases like cancer, analgesia, hypertension or Alzheimer’s disease. In the fruit fly Drosophila melanogaster, five Neprilysins are expressed; but their in vivo substrates have not yet been identified. One of the Drosophila Neprilysins, Nep4, is expressed in the CNS, in muscle tissue, in cardiac tissue and in male reproductive organs. Nep4 is expressed in two isoforms, Nep4A and Nep4B. Isoform A is composed of a short intracellular domain, a transmembrane domain and a large extracellular domain containing the catalytically active center, whereas soluble Nep4B only consists of the extracellular domain. This thesis reveals that overexpression of catalytically active Nep4A in muscle tissue leads to animals with impaired insulin expression, decreased size and weight, affected feeding behavior and reduced locomotion speed. Further phenotypes are an impaired energy metabolism and larval lethality. Knockdown of the whole enzyme or knockout of its catalytic activity also interferes with feeding and locomotion speed and, in addition, causes pupal lethality. As an explanation for the phenotypes, Nep4 mediated hydrolysis of different short neuropeptide F (sNPF) species, which were identified as novel substrates of the peptidase, is proposed. sNPF is known to regulate insulin signaling and knockdown of sNPF phenocopies the Nep4 overexpression phenotypes, which suggests that Nep4 mediated hydrolysis of sNPF regulates insulin expression in the fly. Based on these results additional regulatory peptides were identified as novel Nep4 substrates. Among them are peptides that do not only regulate insulin signaling, but also feeding behavior (Hallier et al., 2016). These findings represent good evidence that muscle bound Nep4 is key to regulate homeostasis of distinct hemolymph circulating peptide hormones. Nep4 localizing to the surface of the central nervous system is likely necessary to ensure effective ligand clearance and thus proper regulation of corresponding peptide receptors.
4

Structural and functional analysis of the HOPS tethering complex at the yeast vacuole

Bröcker, Cornelia 16 August 2012 (has links)
The fusion of yeast vacuoles requires a Rab-GTPase (Ypt7), a tethering complex termed HOPS (homotypic fusion and vacuole protein sorting) and SNAREs. The HOPS complex consists of six subunits and is involved in the initial contact between late endosome (multi vesicular body) and the vacuole. The homologous CORVET complex shares four subunits with the HOPS complex and is required at the endosome. Upon overexpression, I was able to isolate the entire HOPS and stable subcomplexes consisting of two to six subunits. These subcomplexes might represent the core for the assembly, or may be transition intermediates. They could arise when the CORVET complex at the endosome matures into the HOPS complex at the vacuole. Using a structure-function approach, I analysed the HOPS structure via electron microscopy and its function via vacuole fusion assay.
5

Single cell biology of typhoidal Salmonella: heterogeneity of intracellular Salmonella and the unique cytosolic lifestyle of S. Paratyphi A

Scharte, Felix 07 October 2022 (has links)
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. The ty-phoidal S. enterica serovars Paratyphi A (SPA) and Typhi (STY) are human-restricted, and cause severe systemic diseases, while many S. enterica serovars like Typhimurium (STM) have a broad host range and in human hosts usually lead to self-limiting gastroenteritis. There are key differences between typhoidal (TS) and non-typhoidal (NTS) Salmonella in pathogenesis, but research on TS is challenging due to host restriction. Since STM causes a typhoid-like disease in mice, it was widely used as model organism to mimic human TS infection. Although results gained by research on STM could provide major insights in Salmonella virulence in general, the specific virulence mechanisms of TS are far from being understood. Both TS and NTS are able to invade mammalian cells and to replicate within host cells, including epithelial cells and macrophages. After invasion or phagocytic uptake, Salmonella resides in a membrane-bound compartment, the Salmonella-containing vacuole (SCV). The subsequent in-tracellular lifestyle is dependent on the translocation of effector proteins via a type 3 secretion system (T3SS) which is encoded by genes on Salmonella pathogenicity island 2 (SPI2). During the intracellular lifestyle, vesicular compartments of host cells are manipulated by effector pro-teins of the SPI2-T3SS and Salmonella-induced filaments (SIF) are formed. It is currently un-known if observations regarding the molecular pathogenesis made for STM are applicable to TS serovars SPA and STY. In this work, the intracellular lifestyles of TS were investigated on single cell level. Analyses of intracellular activities of STY and SPA in various host cells showed that STY and SPA deploy SPI2-T3SS to actively manipulate their host cells, but with far lower frequency than STM. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for sur-vival or proliferation in phagocytic host cells. Reduced intracellular activities and pronounced SCV integrity of STY and SPA might contribute to the stealth strategy of STY and SPA, facilitat-ing systemic spread and persistence. Furthermore, by analyses of intracellular transcriptomic architecture during human epithelial cell infection of SPA and STM, different gene expression patterns in key virulence and metabolic pathways were identified. Elevated expression of SPI1 and flagella-chemotaxis genes by intracellular SPA results in cytosolic, flagella-mediated motility and increased invasiveness of SPA. Distinct gene expression patterns of carbon utilization path-ways, flagella-chemotaxis and SPI1 genes might contribute to the invasive and systemic disease developed following SPA infection in humans. Live cell imaging revealed that SPA invades host cells in a cooperative manner with multiple bacteria per invasion site, leading to error-prone macropinocytosis with increased membrane damage of the early SCV. After release into the cytosol, motile bacteria showed reduced autophagosomal capture. The results provide new insights into the virulence profile of STY and SPA by unravelling pre-viously unknown intracellular phenotypes and virulence traits. The established 3D and 2D intes-tinal organoid models offer new tools for analyses of human-restricted pathogens in a more in vivo relevant context.
6

Identification and Functional Characterization of Novel Ionotropic Glutamate Receptor Subunits at Drosophila Neuromuscular Synapse / Identifizierung und funktionelle Charakterisierung neuer ionotroper Glutamatrezeptoruntereinheiten der neuromuskulären Synapse von Drosophila melanogaster

Qin, Gang 26 January 2005 (has links)
No description available.
7

Identification of nuclear export signals and structural analysis of transport complexes. / Identification of nuclear export signals and structural analysis of transport complexes.

Kadian, Chandini 21 September 2012 (has links)
No description available.
8

Protein-Protein-Wechselwirkungen bei der AP-3-Vesikelbildung und –fusion und der Protonenleitung durch die ATP-Synthase

Langemeyer, Lars 09 July 2010 (has links)
Zu den Eigenschaften eukaryotischer Zellen gehört ihre Kompartimentierung, welche durch die Abtrennung verschiedener Reaktionsräume durch Lipiddoppelschichten erreicht wird. Verschiedene Vesikel-Transportwege verbinden diese Kompartimente miteinander, einer dieser Wege in der Hefe Saccharomyces cerevisiae ist der sogenannte ALP-Weg. Dieser gehört zu den biosynthetischen Wegen, über die neue Proteine an ihren Bestimmungsort gebracht werden, in diesem Falle die Vakuole. Ausgehend vom Golgi-Apparat werden die Vesikel dieses Weges mit Hilfe des Adaptorproteinkomplexes-3 (AP-3) gebildet. Ein weiteres Protein, das eine spezifische Funktion in diesem Weg übernimmt, ist Vps41. Ein aktuelles Modell beschreibt seine Funktion in der Aufnahme der Vesikel an der Vakuole. Es konnte gezeigt werden, das Vps41 mit der sogenannten ear-Domäne von Apl5, einer Untereinheit des AP-3- Komplexes, interagiert. In dieser Arbeit konnte ich nachweisen, dass die Interaktionsstelle im Vps41 innerhalb einer konservierten PEST-Domäne liegt. Eine Deletion dieser Domäne beeinflußte die Funktion des Proteins im ALP-Weg jedoch nicht die in der homotypischen Vakuolenfusion und im CPY-Weg. Eine weitere Eingrenzung des deletierten Bereiches zeigte, dass die PEST-Domäne eine Sequenz enthält, die einem Di-Leucin- Sortierungssignal ähnlich ist. Dieses konnte ich als minimal notwendigen Bereich für die Wechselwirkung mit der Apl5-ear-Domäne bestimmen. Meine Daten zeigen, dass dieser Bereich des Proteins notwendig ist für das Docking der AP-3-Vesikel an der Vakuole. Weiterhin konnte ich eine kompetitive Bindung von Liposomen und Apl5 an die N-terminale Hälfte von Vps41 zeigen. Zusammengefasst und mit aktuellen Veröffentlichungen in Zusammhang gebracht, ergänzen meine Daten das Modell der Funktion von Vps41 in der Vesikelaufnahme an der Vakuole: Vps41 wird durch die Rab-GTPase Ypt7, als deren Effektorprotein, an späte Endosomen gebunden. An dieser stark gekrümmten Membran taucht ein kürzlich identifiziertes ALPS (amphipathic lipid packing sensor)-Motiv im Vps41 in die Membran des Organells ein und zieht so den N-terminalen Bereich mit der Bindestelle für die AP-3-Vesikel an die Oberfläche des Organells wodurch eine verfrühte Fusion der AP-3-Vesikel mit dem Endosom verhindert wird. Erst nach der Reifung zur Vakuole wird die PEST-Domäne für die Bindung an Apl5 verfügbar, da sich die Membrankrümmung ändert. Zusätzlich wird das ALPS-Motiv phosphoryliert, so dass dieses nicht mehr in die Membran eintauchen kann. Erst jetzt ist eine Interaktion zwischen Apl5 und Vps41 und damit eine Fusion der AP-3-Vesikel mit der Vakuole möglich. Der zweite Teil dieser Arbeit beschäftigt sich mit der Protonentranslokation durch den Fo-Teil der ATP-Synthase aus Escherichia coli. Durch Mutagenese wurden ATP-Synthasen hergestellt, in denen die beiden für den Protonentransport essentiellen Aminosäurereste D61 in der Untereinheit c und R210 in der Untereinheit a in der α-Helix in der sie liegen, entweder einzeln oder beide zusammen, um je eine Helixwindung nach oben oder unten verschoben wurden. Dies führt zu einer Verlängerung bzw. Verkürzung der Protonenzu- und austrittskanäle. Durch die Untersuchung der Funktionalität dieser ATPasen auf sowohl aktives und passives Protonenpumpen, als auch ATP-Synthese konnte ich zeigen, daß die Position der beiden essentiellen Aminosäurereste cD61 und aR210 zueinander nicht entscheidend ist. Werden beide Reste in die gleiche Richtung verschoben, so daß ihre Position zueinander gleich bleibt, kommt es unabhängig von der Richtung immer zu einem kompletten Funktionsverlust. Weiterhin läßt sich aus meinen Daten folgern, daß die Position des Restes aR210 in der Mitte der Membran wichtig ist. Beim Verschieben des Restes auf die Position 206 (a-up) geht die gesamte Funktion des Fo-Teiles verloren, während das Verschieben auf die Position 214 (a-down) zu einem passiven Ausströmen der Protonen durch den Fo-Teil führt. Die Position des Restes cD61 in der Membran ist flexibler. Obwohl die Repositionierung des Aspartats auf die Position 57 (c-up) jegliche Funktionalität des Fo-Teiles beeinträchtigt, ermöglicht ein Verschieben auf die Position 65 (c-down) aktives und passives Protonenpumpen, sowie die Synthese von ATP.
9

Untersuchungen zur Regulation des TSC - Komplexes in Schizosaccharomyces pombe

Schaubitzer, Kerstin 07 September 2009 (has links)
Die Anpassung des Zellwachstums eukaryotischer und prokaryotischer Zellen an sich ändernde intra- und extrazelluläre Signale wie Nährstoffverfügbarkeit, Wachstumsfaktoren und dem zellulären Energielevel bedarf eines effektiven Regulationssystems. In Säugern übernimmt der TSC-Komplex als negativer Regulator des TOR-Signalweges eine wichtige Rolle bei der Regulation des Zellwachstums. In S. pombe ist der TSC-Komplex konserviert. Zudem existieren Homologe der Untereinheiten der AMPK, welche in Säugern den TSC-Komplex positiv regulieren. In der vorliegenden Arbeit konnte die Existenz von zwei funktionell getrennten AMPK-Komplexen nachgewiesen werden: AMPK I, bestehend aus Ssp2, SPCC1919.03c und Cbs2 und AMPK II, bestehend aus Ppk9, SPCC1919.03c und Cbs2. Genetische Daten lassen eine Beteiligung von AMPK I an der Regulation der sexuellen Differenzierung, der Adaption an osmotischen Stress und der Verwertung nicht-fermentierbarer Kohlenstoffquellen vermuten. AMPK II scheint für die Adaption an Cadmiumstress wichtig zu sein.In der vorliegenden Arbeit wurde weiterhin die Beteiligung der beiden AMPK alpha-Isoformen am TSC/Rhb1/TOR-Signalweg in S. pombe näher untersucht. Dabei deutete sich an, dass Ppk9 und der TSC-Komplex weder synergistische noch antagonistische Funktionen in der Zelle ausüben. Im Gegensatz dazu scheinen Ssp2 und die TSC-Proteine antagonistische Funktionen auszuüben. Einige Wachstumsdefekte der ssp2 -Deletionsmutanten können durch eine Hyperaktivierung des TSC/Rhb1/TOR-Signalweges supprimiert werden. Die Deletion von ssp2 führt zu einer Suppression des Wachstumsdefektes von Leucin-auxotrophen tsc-Mutanten. Diese Beobachtung erlaubt die Einordnung von Ssp2 in einem zum TSC/Rhb1/TOR-Weg parallelen Signalweg. Im Gegensatz zu Säugern scheinen in S. pombe TSC/Rhb1/TORC1 und Ssp2 einen gemeinsamen Effektor unabhängig voneinander zu regulieren, um verschiedene Wachstumsbedingungen miteinander zu integrieren und das Zellwachstum entsprechend anzupassen.
10

σ1-adaptin - the Small Subunit of the Clathrin Adaptor Complex AP-1 / σ1-Adaptin - die kleine Untereinheit des Clathrin-Adaptorkomplexes AP-1

Riel, Constanze 25 June 2004 (has links)
No description available.

Page generated in 0.0546 seconds