1 |
Remarkable curves in the Euclidean planeGranholm, Jonas January 2014 (has links)
An important part of mathematics is the construction of good definitions. Some things, like planar graphs, are trivial to define, and other concepts, like compact sets, arise from putting a name on often used requirements (although the notion of compactness has changed over time to be more general). In other cases, such as in set theory, the natural definitions may yield undesired and even contradictory results, and it can be necessary to use a more complicated formalization. The notion of a curve falls in the latter category. While it is intuitively clear what a curve is – line segments, empty geometric shapes, and squiggles like this: – it is not immediately clear how to make a general definition of curves. Their most obvious characteristic is that they have no width, so one idea may be to view curves as what can be drawn with a thin pen. This definition, however, has the weakness that even such a line has the ability to completely fill a square, making it a bad definition of curves. Today curves are generally defined by the condition of having no width, that is, being one-dimensional, together with the conditions of being compact and connected, to avoid strange cases. In this thesis we investigate this definition and a few examples of curves.
|
2 |
Hardy-Littlewood/Bohnenblust-Hille multilinear inequalities and Peano curves on topological vector spacesAlbuquerque, Nacib André Gurgel e 26 December 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:22Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1916558 bytes, checksum: 2a74bd2ee59f2f8ed1aa50acfcc283c4 (MD5)
Previous issue date: 2014-12-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is divided in two subjects. The first concerns about the Bohnenblust-Hille and Hardy-
Littlewood multilinear inequalities. We obtain optimal and definitive generalizations for both
inequalities. Moreover, the approach presented provides much simpler and straightforward proofs
than the previous one known, and we are able to show that in most cases the exponents involved
are optimal. The technique used is a combination of probabilistic tools and of an interpolative
approach; this former technique is also employed in this thesis to improve the constants for
vector-valued Bohnenblust-Hille type inequalities. The second subject has as starting point
the existence of Peano spaces, that is, Haurdor spaces that are continuous image of the unit
interval. From the point of view of lineability we analyze the set of continuous surjections from
an arbitrary euclidean spaces on topological spaces that are, in some natural sense, covered by
Peano spaces, and we conclude that large algebras are found within the families studied. We
provide several optimal and definitive result on euclidean spaces, and, moreover, an optimal
lineability result on those special topological vector spaces. / Este trabalho édividido em dois temas. O primeiro diz respeito às desigualdades multilineares
de Bohnenblust-Hille e Hardy-Littlewood. Obtemos generalizações ótimas e definitivas para
ambas desigualdades. Mais ainda, a abordagem apresentada fornece demonstrações mais simples
e diretas do que as conhecidas anteriormente, além de sermos capazes de mostrar que os
expoentes envolvidos são ótimos em varias situações. A técnica utilizada combina ferramentas
probabilísticas e interpolativas; esta ultima e ainda usada para melhorar as estimativas das
versões vetoriais da desigualdade de Bohnenblust-Hille. O segundo tema possui como ponto
de partida a existência de espaços de Peano, ou seja, os espaços de Hausdor que são imagem
contínua do intervalo unitário. Sob o ponto de vista da lineabilidade, analisamos o conjunto das
sobrejecoes contínuas de um espaço euclidiano arbitrário em um espaço topológico que, de certa
forma, e coberto por espaços de Peano, e concluímos que grandes álgebras são encontradas nas
famílias estudadas. Fornecemos vários resultados ótimos e definitivos em espaços euclidianos, e,
mais ainda, um resultado de lineabilidade ótimo naqueles espaços vetoriais topológicos especiais.
|
Page generated in 0.0133 seconds