1 |
An Automated System for the Stage of Hydrolysis and Filtration in the Extraction of Pectin from the Cocoa ShellCcencho, Maritza, Quijada, Valeria, Vinces, Leonardo 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / Pectin obtained from cocoa husks has recently been investigated because of its gelling and stabilizing properties that have great potential for the food, cosmetic and pharmaceutical industries. However, its production at the industrial level has not been studied or developed in Peru. A fundamental part of the extraction process is the stage of hydrolysis and filtering of the cocoa shell. Because of this, an automated system for acid-thermal hydrolysis and shell filtration is proposed. The control of both processes is of great importance because the quality and efficiency of the extracted pectin will depend on it. The tests will be carried out in a cylindrical taper with a 100 L capacity which is adapted to contain a 20 L cylindrical filter, both made of AISI 304 stainless steel. The filter has a motor to homogenize the temperature and pH of the mix. The pH of the process is 2 and the temperature is 90 ± 2 °C, since in these ranges the pectin is released more easily from the cocoa shell. The method consists of the structural design of the tank and the filter, and in the design of the pH regulator and the heating system. The yield of the extraction process was achieved by 10%. / Revisión por pares
|
2 |
<b>Novel Applications of Microbubble Technology for Sustainable Food Processing</b>Yiwen Bao (8232060) 21 August 2024 (has links)
<p dir="ltr">Global food demand increases rapidly as a result of continuously growing population has raised severe concerns with food security. To overcome this critical challenge, food systems must be transformed to produce food with not only higher yield but also better nutritional quality. Therefore, food processing, as a critical step in food production chain that turn agricultural products into food, needs to be innovated through applications of cutting-edge technologies.</p><p dir="ltr">Microbubbles (MBs) are tiny gas-filled bubbles with distinctive physicochemical characteristics, including slow rising speed and long lifetime in liquid, large surface area per unit of gas volume, high internal pressure, high gas dissolution rate, hydrophobic and negatively charged surface and production of reactive oxygen species. Additionally, MB dispersion can enhance the heat and mass transfer properties of liquid. These features have led MBs to numerous applications in the fields of disease treatment, anaerobic digestion, and wastewater treatment, however, their applications in food processing have not thoroughly explored.</p><p dir="ltr">In this dissertation, MB technology was applied to different unit operations of food processing, including freezing, concentration and extraction, and the effects of MBs on process efficiency and food product quality were comprehensively studied. In the first study, MB-infused freezing medium was used for grape tomato immersion freezing. MBs markedly reduced the drip loss of tomato by 13.7–17.0% and improved its firmness, which were correlated to the accelerated nucleation process and formation of small ice crystals during freezing. The impact of MBs on water evaporation during apple juice concentration was investigated in the second study. MBs dramatically enhanced water evaporation, and concentration at bubble gas temperature of 40 °C and juice temperature of 70 °C showed the largest increase in the evaporation rate, by 104%. Moreover, although air-MBs showed an oxidation effect on both frozen tomato and concentrated juice, N<sub>2</sub>-MBs were found to be an ideal alternative which much better preserved the nutritional values of processed foods. Lastly, MBs and cold plasma-MBs were incorporated into citric acid solution for extracting pectin from apple pomace. MBs present in extracting solvent increased the extraction yield by 18–21%, and extraction with plasma-MBs showed even higher yields by up to 30%. Additionally, MB and cold plasma-assisted extraction were found more effective in extracting complex RG-I pectin.</p><p dir="ltr">This dissertation develops various approaches to incorporating MBs into conventional unit operations and enhancing their performance. With these novel applications explored, MB technology will not only increase the productivity but also reduce the energy, water and chemical use of food processing. Ultimately, MB-assisted processes are expected to play an important role in improving the sustainability of the food industry.</p>
|
Page generated in 0.0808 seconds