• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment Of Consumer Perceptions About Food Processing Technologies For Cooperative Extension Educational Initiatives

Arnold, Nicole Leanne 25 September 2019 (has links)
New food processing technologies are needed to create safe, high-quality food products that are still considered "fresh" by consumers. Despite the numerous benefits attributed to 'food processing', consumers continue to perceive the term negatively. Consumer acceptance of foods processed with different technologies generally increases when factual information is provided to the consumer. Educators working within Cooperative Extension are a resource for public dissemination of food information. By working directly in the community, Extension educators often cultivate positive relationships with local clientele. Therefore, Extension educators can dispel myths related to food processing technologies and deliver science-supported information to the general public. Consumer knowledge, perceptions, and purchasing intentions associated with both conventional and emerging food processing technologies were assessed through a nationwide telephone survey administered by Virginia Tech's Center for Survey Research Center. A similar version of the telephone survey was disseminated in an online format to Virginia Extension agents. An additional section of the online survey served as a needs assessment for educational materials related to food processing technologies. A grounded theory methodology was used for qualitative coding in both surveys. Approximately 67% of consumers expressed concerns towards the term "processed foods." The majority of Extension agents (67.4%) expressed concerns about foods that had been processed, citing additional ingredients, preservatives, and additives; safety; and health implications. Both the consumer and Extension agent groups were more likely to be supportive of light-exposed foods to enhance food safety and quality, in comparison to gas-exposed foods. Although agents may be familiar with some food processing technologies, they may not have the resources to understand the scientific mechanisms for which a technology is able to increase food safety. Consumer education regarding emerging technologies is necessary to anticipate potential consumer concerns; however, agents still lack resources and information about existing and frequently used food processing technologies. Educational interventions are needed to provide information to consumers and increase their acceptance of new and currently used processing technologies so that the food industry can effectively target emerging issues related to food. / Doctor of Philosophy
2

Pressure assisted thermal sterilization: a novel means of processing foods

Wimalaratne, Sajith Kanchana January 2009 (has links)
This thesis investigates a newly developed and patented technology for its ability to inactivate spore- forming bacteria and non-spore-forming microorganisms. This new technology “Pressure Assisted Thermal Sterilization©” (PATS) is based on the theory of the thermal expansion of liquids. The efficiency of inactivating spore-forming and non-spore-forming microorganisms by PATS was compared with the thermal treatment alone. A combination treatment consisting of high pressure processing and gaseous carbon dioxide was also investigated for its ability to inactivate bacterial spores in model and real food matrices. The structural damage caused by treatments to the spores and non-spore-forming bacteria was assessed by scanning electron microscopy. Geobacillus stearothermophilus spores suspended in Milli-Q water, UHT milk and pumpkin soup, treated by PATS were found to have significantly lower decimal reduction times (D values) compared with the thermal treatment alone. Spores suspended in UHT milk were more heat resistant compared with those in Milli-Q water and pumpkin soup. Bacillus cereus spores suspended in Milli-Q water and pumpkin soup treated with PATS were more effectively inactivated compared with spores treated by the thermal treatment alone. Clostridium botulinum spores in saline buffer subjected to PATS treatment were inactivated more effectively compared with the thermal treatment alone. Overall, the results show that PATS was a better processing technique for inactivation of bacterial spores compared with thermal treatment alone. However, PATS had no added benefit in inactivating the non-spore-forming bacteria Escherichia coli and Saccharomyces cerevisiae cells compared with the thermal treatment. A shelf life study showed that B. cereus spores in pumpkin soup retained a low spore count (<5 LogCFU/mL) for approximately 40 days in 30oC storage after treatment with PATS. No additional degradation of colour pigments of pumpkin soup and model pumpkin juice was observed following PATS compared with the thermal treatment. Spore-forming microorganisms can be resistant to pressure treatment alone, which limits the application of high pressure processing (HPP). Therefore, a combination approach was investigated. The mechanism of inactivating spores by combining HPP with other treatments is that the pressure assists in spore germination. Then a secondary treatment (thermal or CO2 gas) can be used to inactivate the germinated spores. A combined application of HPP and a consecutive CO2 treatment was investigated for the efficiency of spore inactivation. Results showed that HPP (200 MPa for 30 min) followed by a CO2 treatment inactivated Bacillus subtilis 168 in nutrient broth, tomato juice and liquid whole egg by 2.5, 1.0 and 1.5 LogCFU/mL respectively. These results indicated that this technique is inadequate for practical use. Scanning electron micrographs showed that pressure processing of B. subtilis 168 and B. subtilis natto spores resulted in deformation of the spore structure. This structural deformation of spores may have been due to water absorption during HPP and subsequent release upon decompression. PATS treated G. stearothermophilus and B. cereus spores were more severely damaged compared with the same spores which underwent thermal treatment alone. However, the extent to which E. coli and S. cerevisiae cells were damaged by both PATS and thermal treatment was similar.
3

Pressure assisted thermal sterilization: a novel means of processing foods

Wimalaratne, Sajith Kanchana January 2009 (has links)
This thesis investigates a newly developed and patented technology for its ability to inactivate spore- forming bacteria and non-spore-forming microorganisms. This new technology “Pressure Assisted Thermal Sterilization©” (PATS) is based on the theory of the thermal expansion of liquids. The efficiency of inactivating spore-forming and non-spore-forming microorganisms by PATS was compared with the thermal treatment alone. A combination treatment consisting of high pressure processing and gaseous carbon dioxide was also investigated for its ability to inactivate bacterial spores in model and real food matrices. The structural damage caused by treatments to the spores and non-spore-forming bacteria was assessed by scanning electron microscopy. Geobacillus stearothermophilus spores suspended in Milli-Q water, UHT milk and pumpkin soup, treated by PATS were found to have significantly lower decimal reduction times (D values) compared with the thermal treatment alone. Spores suspended in UHT milk were more heat resistant compared with those in Milli-Q water and pumpkin soup. Bacillus cereus spores suspended in Milli-Q water and pumpkin soup treated with PATS were more effectively inactivated compared with spores treated by the thermal treatment alone. Clostridium botulinum spores in saline buffer subjected to PATS treatment were inactivated more effectively compared with the thermal treatment alone. Overall, the results show that PATS was a better processing technique for inactivation of bacterial spores compared with thermal treatment alone. However, PATS had no added benefit in inactivating the non-spore-forming bacteria Escherichia coli and Saccharomyces cerevisiae cells compared with the thermal treatment. A shelf life study showed that B. cereus spores in pumpkin soup retained a low spore count (<5 LogCFU/mL) for approximately 40 days in 30oC storage after treatment with PATS. No additional degradation of colour pigments of pumpkin soup and model pumpkin juice was observed following PATS compared with the thermal treatment. Spore-forming microorganisms can be resistant to pressure treatment alone, which limits the application of high pressure processing (HPP). Therefore, a combination approach was investigated. The mechanism of inactivating spores by combining HPP with other treatments is that the pressure assists in spore germination. Then a secondary treatment (thermal or CO2 gas) can be used to inactivate the germinated spores. A combined application of HPP and a consecutive CO2 treatment was investigated for the efficiency of spore inactivation. Results showed that HPP (200 MPa for 30 min) followed by a CO2 treatment inactivated Bacillus subtilis 168 in nutrient broth, tomato juice and liquid whole egg by 2.5, 1.0 and 1.5 LogCFU/mL respectively. These results indicated that this technique is inadequate for practical use. Scanning electron micrographs showed that pressure processing of B. subtilis 168 and B. subtilis natto spores resulted in deformation of the spore structure. This structural deformation of spores may have been due to water absorption during HPP and subsequent release upon decompression. PATS treated G. stearothermophilus and B. cereus spores were more severely damaged compared with the same spores which underwent thermal treatment alone. However, the extent to which E. coli and S. cerevisiae cells were damaged by both PATS and thermal treatment was similar.
4

Pressure assisted thermal sterilization: a novel means of processing foods

Wimalaratne, Sajith Kanchana January 2009 (has links)
This thesis investigates a newly developed and patented technology for its ability to inactivate spore- forming bacteria and non-spore-forming microorganisms. This new technology “Pressure Assisted Thermal Sterilization©” (PATS) is based on the theory of the thermal expansion of liquids. The efficiency of inactivating spore-forming and non-spore-forming microorganisms by PATS was compared with the thermal treatment alone. A combination treatment consisting of high pressure processing and gaseous carbon dioxide was also investigated for its ability to inactivate bacterial spores in model and real food matrices. The structural damage caused by treatments to the spores and non-spore-forming bacteria was assessed by scanning electron microscopy. Geobacillus stearothermophilus spores suspended in Milli-Q water, UHT milk and pumpkin soup, treated by PATS were found to have significantly lower decimal reduction times (D values) compared with the thermal treatment alone. Spores suspended in UHT milk were more heat resistant compared with those in Milli-Q water and pumpkin soup. Bacillus cereus spores suspended in Milli-Q water and pumpkin soup treated with PATS were more effectively inactivated compared with spores treated by the thermal treatment alone. Clostridium botulinum spores in saline buffer subjected to PATS treatment were inactivated more effectively compared with the thermal treatment alone. Overall, the results show that PATS was a better processing technique for inactivation of bacterial spores compared with thermal treatment alone. However, PATS had no added benefit in inactivating the non-spore-forming bacteria Escherichia coli and Saccharomyces cerevisiae cells compared with the thermal treatment. A shelf life study showed that B. cereus spores in pumpkin soup retained a low spore count (<5 LogCFU/mL) for approximately 40 days in 30oC storage after treatment with PATS. No additional degradation of colour pigments of pumpkin soup and model pumpkin juice was observed following PATS compared with the thermal treatment. Spore-forming microorganisms can be resistant to pressure treatment alone, which limits the application of high pressure processing (HPP). Therefore, a combination approach was investigated. The mechanism of inactivating spores by combining HPP with other treatments is that the pressure assists in spore germination. Then a secondary treatment (thermal or CO2 gas) can be used to inactivate the germinated spores. A combined application of HPP and a consecutive CO2 treatment was investigated for the efficiency of spore inactivation. Results showed that HPP (200 MPa for 30 min) followed by a CO2 treatment inactivated Bacillus subtilis 168 in nutrient broth, tomato juice and liquid whole egg by 2.5, 1.0 and 1.5 LogCFU/mL respectively. These results indicated that this technique is inadequate for practical use. Scanning electron micrographs showed that pressure processing of B. subtilis 168 and B. subtilis natto spores resulted in deformation of the spore structure. This structural deformation of spores may have been due to water absorption during HPP and subsequent release upon decompression. PATS treated G. stearothermophilus and B. cereus spores were more severely damaged compared with the same spores which underwent thermal treatment alone. However, the extent to which E. coli and S. cerevisiae cells were damaged by both PATS and thermal treatment was similar.
5

Pressure assisted thermal sterilization: a novel means of processing foods

Wimalaratne, Sajith Kanchana January 2009 (has links)
This thesis investigates a newly developed and patented technology for its ability to inactivate spore- forming bacteria and non-spore-forming microorganisms. This new technology “Pressure Assisted Thermal Sterilization©” (PATS) is based on the theory of the thermal expansion of liquids. The efficiency of inactivating spore-forming and non-spore-forming microorganisms by PATS was compared with the thermal treatment alone. A combination treatment consisting of high pressure processing and gaseous carbon dioxide was also investigated for its ability to inactivate bacterial spores in model and real food matrices. The structural damage caused by treatments to the spores and non-spore-forming bacteria was assessed by scanning electron microscopy. Geobacillus stearothermophilus spores suspended in Milli-Q water, UHT milk and pumpkin soup, treated by PATS were found to have significantly lower decimal reduction times (D values) compared with the thermal treatment alone. Spores suspended in UHT milk were more heat resistant compared with those in Milli-Q water and pumpkin soup. Bacillus cereus spores suspended in Milli-Q water and pumpkin soup treated with PATS were more effectively inactivated compared with spores treated by the thermal treatment alone. Clostridium botulinum spores in saline buffer subjected to PATS treatment were inactivated more effectively compared with the thermal treatment alone. Overall, the results show that PATS was a better processing technique for inactivation of bacterial spores compared with thermal treatment alone. However, PATS had no added benefit in inactivating the non-spore-forming bacteria Escherichia coli and Saccharomyces cerevisiae cells compared with the thermal treatment. A shelf life study showed that B. cereus spores in pumpkin soup retained a low spore count (<5 LogCFU/mL) for approximately 40 days in 30oC storage after treatment with PATS. No additional degradation of colour pigments of pumpkin soup and model pumpkin juice was observed following PATS compared with the thermal treatment. Spore-forming microorganisms can be resistant to pressure treatment alone, which limits the application of high pressure processing (HPP). Therefore, a combination approach was investigated. The mechanism of inactivating spores by combining HPP with other treatments is that the pressure assists in spore germination. Then a secondary treatment (thermal or CO2 gas) can be used to inactivate the germinated spores. A combined application of HPP and a consecutive CO2 treatment was investigated for the efficiency of spore inactivation. Results showed that HPP (200 MPa for 30 min) followed by a CO2 treatment inactivated Bacillus subtilis 168 in nutrient broth, tomato juice and liquid whole egg by 2.5, 1.0 and 1.5 LogCFU/mL respectively. These results indicated that this technique is inadequate for practical use. Scanning electron micrographs showed that pressure processing of B. subtilis 168 and B. subtilis natto spores resulted in deformation of the spore structure. This structural deformation of spores may have been due to water absorption during HPP and subsequent release upon decompression. PATS treated G. stearothermophilus and B. cereus spores were more severely damaged compared with the same spores which underwent thermal treatment alone. However, the extent to which E. coli and S. cerevisiae cells were damaged by both PATS and thermal treatment was similar.

Page generated in 0.1572 seconds