• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implantable microelectrode biosensors for neurochemical monitoring of brain functioning / Microcapteurs implantables pour le suivi neurochimique de fonctionnement du cerveau

Vasylieva, Natalia 11 September 2012 (has links)
Les microcapteurs implantables sont des outils de choix pour l’étude du système nerveux central. Ils permettent d’analyser en temps réel la composition du milieu interstitiel du cerveau et les variations de concentration de neurotransmetteurs et de substrats métaboliques dans l’espace extracellulaire. La procédure d’immobilisation de l’enzyme sur l’électrode est une étape cruciale déterminant les performances du biocapteur. Nous avons développé une méthode d’immobilisation simple, non-toxique et peu chère en utilisant une molécule de poly(ethyleneglycol) diglycidyl éther (PEGDE) qui répond bien aux critères des applications cliniques. La méthode a été étudiée et optimisée sur trois enzyme: la Glucose oxydase, la D-amino acide oxydase et la Glutamate oxydase. Les capteurs développés se caractérisent par une forte sensibilité et un temps de réponse suffisamment court pour la détection des événements biologiques en temps réel. Les capteurs à base de PEGDE ont démontrés une bonne stabilité dans le temps et leur capacité de suivre en temps réel la variation de concentration de glucose dans le SNC du rat suite à l’injection d’insuline ou de glucose. Nous avons également adapté les méthodes d’immobilisation d’enzyme les plus utilisées dans le domaine des neurosciences: immobilisation par réticulation dans des vapeurs de Glutaraldéhyde ou par PEGDE, piégeage dans une matrice de sol-gel ou de polypyrrole dérivé, ou immobilisation dans une matrice d’hydrogel. Nous avons comparé les biocapteurs ainsi obtenus en termes de sensibilité, de stabilité in vivo, de temps de réponse et aussi de toxicité. Cette étude comparative nous a permis de conclure que le PEGDE représente un procédé d’immobilisation optimal car il ne demande pas de synthèse organique, contrairement à l’hydrogel, il n’est pas toxique contrairement au glutaraldehyde et il assure une immobilisation covalente plus stable que le piégeage dans des sol-gel ou polypyrrole. Cette étude comparative a mis également en évidence l’effet de la procédure de fixation de l’enzyme sur la spécificité du biocapteur. Nous avons montré que l’immobilisation par glutaraldehyde provoque une importante perte de sélectivité de l’enzyme. Quant au PEGDE, son immobilisation est assez douce pour préserver la spécificité naturelle de l’enzyme. Nous avons montré que la procédure d’immobilisation a un impact important sur la quantification des molécules dans les échantillons biologiques et in vivo. La validité des mesures sur nos capteurs a été contrôlée par HPLC ou électrophorèse capillaire. Nous avons également développé des sondes multisensibles en utilisant les techniques de microfabrication sur silicium. Le dispositif comporte une aiguille de 6mm en longueur, 100µm en largeur et 50 µm en épaisseur. Elle porte trois électrodes de taille 40x200µm. Ces dispositifs, optimisés pour réduire les effets d’interférence entre les électrodes, ont été pour le suivi simultané de glucose et lactate dans le SNC de rats anesthésiés. / Identification, monitoring and quantification of biomolecules in the CNS is a field of growing interest for identifying biomarkers of neurological diseases. In this thesis, silicon needle-shaped multi-molecules sensing microprobes were developed. Our microelectrode array design comprises a needle length of 6mm with 100x50 µm2 cross-section bearing three platinum electrodes with a size of 40x200 µm and 200µm spacing between them. We have used these microprobes for simultaneous glucose and lactate monitoring, using the third electrode for control of non-specific current variations. Local microdroplet protein deposition on the electrode surface was achieved using a pneumatic picopump injection system. Enzyme immobilization on the electrode surface is a key step in microelectrode biosensor fabrication. We have developed a simple, low cost, non-toxic enzyme immobilization method employing poly(ethyleneglycol) diglycidyl ether (PEGDE). Successful biosensor fabrication was demonstrated with glucose oxidase, D-amino acid oxidase, and glutamate oxidase. We found that these biosensors exhibited high sensitivity and short response time sufficient for observing biological events in vivo on a second-by-second timescale. PEGDE-based biosensors demonstrated an excellent long-term stability and reliably monitored changes in brain glucose levels induced by sequential administration of insulin and glucose solution. We then carried out a comparative study of five enzyme immobilization procedures commonly used in Neuroscience: covalent immobilization by cross-linking using glutaraldehyde, PEGDE, or a hydrogel matrix and enzyme entrapment in a sol-gel or polypyrrole-derived matrices. Enzymatic microelectrodes prepared using these different procedures were compared in terms of sensitivity, response time, linear range, apparent Michaelis-Menten constant, stability and selectivity. We conclude that PEGDE and sol-gel techniques are potentially promising procedures for in vivo laboratory studies. The comparative study also revealed that glutaraldehyde significantly decreased enzyme selectivity while PEGDE preserved it. The effects that immobilization can have on enzyme substrate specificity, produce dramatic consequences on glutamate detection in complex biological samples and in the CNS. Our biosensor’s results were systematically controlled by HPLC or capillary electrophoresis. The highly selective PEGDE-based biosensors allowed accurate measurements glutamate concentrations in the anesthetized and awaked rats at physiological conditions and under pharmacological and electrical stimulations. The microfabricated multielectrodes based on silicon needles coupled to the simple, non-toxic and mild immobilization method based on PEGDE, open new possibilities for specific neurotransmitter detection in the central nervous system and the study of cell-cell communication in vivo.
2

Polyamide desalination membrane characterization and surface modification to enhance fouling resistance

Van Wagner, Elizabeth Marie 31 January 2011 (has links)
The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterization of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ([microgram]/cm2), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved fouling resistance compared to unmodified membranes of similar initial water flux, possibly due to steric hindrance imparted by the PEG chains. Fouling resistance was higher for membranes modified with higher molecular weight PEG. Fouling was more extensive for feeds containing the cationic surfactant, potentially due to electrostatic attraction with the negatively charged membranes. However, fouling was also observed in the presence of the anionic surfactant, indicating hydrodynamic forces are also responsible for fouling. / text
3

Implantable microelectrode biosensors for neurochemical monitoring of brain functioning

Vasylieva, Natalia 11 September 2012 (has links) (PDF)
Identification, monitoring and quantification of biomolecules in the CNS is a field of growing interest for identifying biomarkers of neurological diseases. In this thesis, silicon needle-shaped multi-molecules sensing microprobes were developed. Our microelectrode array design comprises a needle length of 6mm with 100x50 µm2 cross-section bearing three platinum electrodes with a size of 40x200 µm and 200µm spacing between them. We have used these microprobes for simultaneous glucose and lactate monitoring, using the third electrode for control of non-specific current variations. Local microdroplet protein deposition on the electrode surface was achieved using a pneumatic picopump injection system. Enzyme immobilization on the electrode surface is a key step in microelectrode biosensor fabrication. We have developed a simple, low cost, non-toxic enzyme immobilization method employing poly(ethyleneglycol) diglycidyl ether (PEGDE). Successful biosensor fabrication was demonstrated with glucose oxidase, D-amino acid oxidase, and glutamate oxidase. We found that these biosensors exhibited high sensitivity and short response time sufficient for observing biological events in vivo on a second-by-second timescale. PEGDE-based biosensors demonstrated an excellent long-term stability and reliably monitored changes in brain glucose levels induced by sequential administration of insulin and glucose solution. We then carried out a comparative study of five enzyme immobilization procedures commonly used in Neuroscience: covalent immobilization by cross-linking using glutaraldehyde, PEGDE, or a hydrogel matrix and enzyme entrapment in a sol-gel or polypyrrole-derived matrices. Enzymatic microelectrodes prepared using these different procedures were compared in terms of sensitivity, response time, linear range, apparent Michaelis-Menten constant, stability and selectivity. We conclude that PEGDE and sol-gel techniques are potentially promising procedures for in vivo laboratory studies. The comparative study also revealed that glutaraldehyde significantly decreased enzyme selectivity while PEGDE preserved it. The effects that immobilization can have on enzyme substrate specificity, produce dramatic consequences on glutamate detection in complex biological samples and in the CNS. Our biosensor's results were systematically controlled by HPLC or capillary electrophoresis. The highly selective PEGDE-based biosensors allowed accurate measurements glutamate concentrations in the anesthetized and awaked rats at physiological conditions and under pharmacological and electrical stimulations. The microfabricated multielectrodes based on silicon needles coupled to the simple, non-toxic and mild immobilization method based on PEGDE, open new possibilities for specific neurotransmitter detection in the central nervous system and the study of cell-cell communication in vivo.

Page generated in 0.0269 seconds