• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 18
  • 17
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 81
  • 25
  • 23
  • 23
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Desenvolvimento de uma bancada didática para estudo dos efeitos termoelétricos aplicados na engenharia

Izidoro, Cleber Lourenço January 2015 (has links)
O presente trabalho apresenta o desenvolvimento de uma bancada didática de baixo custo para estudo dos materiais termoelétricos para a realização de ensaios de obtenção de curvas de desempenho dos módulos termoelétricos no que se refere a geração de energia pelo Efeito Seebeck e resfriamento através do Efeito Peltier de forma a difundir os conhecimentos nas áreas afim em escolas de Engenharia, refletindo na compreensão dos princípios e funcionalidades destas tecnologias. O sistema proposto permite ler simultaneamente até 3 geradores termoelétricos, e é composto por dois principais circuitos eletrônicos: sendo um estágio aquisição de dados compostos por 3 canais para leitura de tensão, 3 canais para corrente e 6 canais para aquisição do sinal dos termopares (<400°C) além de sistema térmico que terá as funções de aquecimento e resfriamento. Os dados medidos são adquiridos para um computador com um software customizado a aplicação que permite o monitoramento das grandezas envolvidas (tensão, corrente, potência e temperatura) para acompanhamento do ensaio dos materiais termoelétricos, tanto por meio de uma indicação numérica como gráfica. O sistema de aquisição de dados possui precisa o para temperatura de ±2,5%, para tensão de ±2,5% e para corrente de ±1,5%. / The present work describes the development of a low cost didactic bench for Study of thermoelectric materials for performing obtaining performance curves testing of thermoelectric modules in regard to energy generation effect Seebeck and cooling via Peltier Effect order to disseminate knowledge in areas related to engineering schools, reflecting the understanding of the principles and features of these technologies. The proposed system can be read simultaneously up to 3 thermoelectric generators, and consists of two main electronic circuits: being a stage data acquisition composed of 3 channels for reading voltage and 3 channels for current using ACS712 instrumentation amplifiers and 6 channels signal acquisition thermocouples (<400 ° C) as well as thermal system will have the heating and cooling functions. The measured data is acquired to a computer with software developed in Delphi language, which allows monitoring of the quantities involved (voltage, current, power and temperature) to monitor the testing of thermoelectric materials, either through a digital display as a graphic . The data acquisition system has a temperature accuracy to ± 2,5% to ± 2.5% voltage and current of ± 1.5%.
42

Desenvolvimento de uma bancada didática para estudo dos efeitos termoelétricos aplicados na engenharia

Izidoro, Cleber Lourenço January 2015 (has links)
O presente trabalho apresenta o desenvolvimento de uma bancada didática de baixo custo para estudo dos materiais termoelétricos para a realização de ensaios de obtenção de curvas de desempenho dos módulos termoelétricos no que se refere a geração de energia pelo Efeito Seebeck e resfriamento através do Efeito Peltier de forma a difundir os conhecimentos nas áreas afim em escolas de Engenharia, refletindo na compreensão dos princípios e funcionalidades destas tecnologias. O sistema proposto permite ler simultaneamente até 3 geradores termoelétricos, e é composto por dois principais circuitos eletrônicos: sendo um estágio aquisição de dados compostos por 3 canais para leitura de tensão, 3 canais para corrente e 6 canais para aquisição do sinal dos termopares (<400°C) além de sistema térmico que terá as funções de aquecimento e resfriamento. Os dados medidos são adquiridos para um computador com um software customizado a aplicação que permite o monitoramento das grandezas envolvidas (tensão, corrente, potência e temperatura) para acompanhamento do ensaio dos materiais termoelétricos, tanto por meio de uma indicação numérica como gráfica. O sistema de aquisição de dados possui precisa o para temperatura de ±2,5%, para tensão de ±2,5% e para corrente de ±1,5%. / The present work describes the development of a low cost didactic bench for Study of thermoelectric materials for performing obtaining performance curves testing of thermoelectric modules in regard to energy generation effect Seebeck and cooling via Peltier Effect order to disseminate knowledge in areas related to engineering schools, reflecting the understanding of the principles and features of these technologies. The proposed system can be read simultaneously up to 3 thermoelectric generators, and consists of two main electronic circuits: being a stage data acquisition composed of 3 channels for reading voltage and 3 channels for current using ACS712 instrumentation amplifiers and 6 channels signal acquisition thermocouples (<400 ° C) as well as thermal system will have the heating and cooling functions. The measured data is acquired to a computer with software developed in Delphi language, which allows monitoring of the quantities involved (voltage, current, power and temperature) to monitor the testing of thermoelectric materials, either through a digital display as a graphic . The data acquisition system has a temperature accuracy to ± 2,5% to ± 2.5% voltage and current of ± 1.5%.
43

Malá testovací teplotní komora / Small Temperature Test Chamber

Wolfshörndl, Robert January 2014 (has links)
This diploma thesis deals with the design of a small temperature test chamber. The first chapter is a study of temperature sensors suitable for realization of temperature chambers. The conclusion of this chapter is devoted to digital temperature sensor DS18B20. The second chapter deals with the principles and basic parameters of Peltier cells. In the third chapter design of individual electronic components of the temperature chamber is realized (circuit diagrams and PCBs), including a description of basic features of the microcontroller firmware. The fourth chapter is devoted to a description of the basic properties of the application software and a description of the communication protocol. The last two chapters deal with the construction of the temperature chamber and the results of final functional test.
44

Malá testovací teplotní komora / Small Temperature Test Chamber

Wolfshörndl, Robert January 2014 (has links)
This diploma thesis deals with the design of a small temperature test chamber. The first chapter is a study of temperature sensors suitable for realization of temperature chambers. The conclusion of this chapter is devoted to digital temperature sensor DS18B20. The second chapter deals with the principles and basic parameters of Peltier cells. In the third chapter design of individual electronic components of the temperature chamber is realized (circuit diagrams and PCBs), including a description of basic features of the microcontroller firmware. The fourth chapter is devoted to a description of the basic properties of the application software and a description of the communication protocol. The last two chapters deal with the construction of the temperature chamber and the results of final functional test.
45

Atmospheric Water Harvesting: An Experimental Study of Viability and the Influence of Surface Geometry, Orientation, and Drainage

Hand, Carson T 01 June 2019 (has links)
Fresh water collection techniques have gained significant attention due to global dwindling of fresh water resources and recent scares such as the 2011-2017 California drought. This project explores the economic viability of actively harvesting water from fog, and techniques to maximize water collection. Vapor compression and thermoelectric cooling based dehumidifier prototypes are tested in a series of experiments to assess water collection capability in foggy environments, and what parameters can increase that capability. This testing shows an approximate maximum collection rate of 1.25 L/kWh for the vapor compression prototype, and 0.32 L/kWh for the thermoelectric cooling prototype; compared to 315 L/kWh for desalination or 12 L/m2/day for passive meshes. Exploration of parameters on the thermoelectric cooling prototype show a potential increase in water collection rate of 29% with the addition of a Teflon coating to the collection surface, 15% by clearing the collection surface, and 89% by tilting certain collection surfaces by 60-75°. In combination, these parameters could push active atmospheric water harvesting into economic viability where significant infrastructure investment is not feasible.
46

Malá testovací teplotní komora / Small Temperature Test Chamber

Wolfshörndl, Robert January 2014 (has links)
This diploma thesis deals with the design of a small temperature test chamber. The first chapter is a study of temperature sensors suitable for realization of temperature chambers. The conclusion of this chapter is devoted to digital temperature sensor DS18B20. The second chapter deals with the principles and basic parameters of Peltier cells. In the third chapter design of individual electronic components of the temperature chamber is realized (circuit diagrams and PCBs), including a description of basic features of the microcontroller firmware. The fourth chapter is devoted to a description of the basic properties of the application software and a description of the communication protocol. The last two chapters deal with the construction of the temperature chamber and the results of final functional test.
47

Autonomní venkovní systém pro pěstování rostlin / Autonomous outdoor system for growing plants

Schmidt, Dominik January 2015 (has links)
This diploma thesis deals with maintaining possibilities for appropriate climatic conditions in outdoor greenhouse. The importance for growing plants is an appropriate temperature, humidity and adequate supply of water. The aim of the study is to suggest an apparatus sustaining beforehand defined conditions in the greenhouse with minimal requirements for maintenance. Apparatus uses analogue control by applying photosezistor and thermistor. For power supply are DC-DC converters used.
48

Autonomní venkovní systém pro pěstování rostlin / Autonomous outdoor system for growing plants

Schmidt, Dominik January 2015 (has links)
This diploma thesis deals with maintaining possibilities for appropriate climatic conditions in outdoor greenhouse. The importance for growing plants is an appropriate temperature, humidity and adequate supply of water. The aim of the study is to suggest an apparatus sustaining beforehand defined conditions in the greenhouse with minimal requirements for maintenance. Apparatus uses analogue control by applying photosezistor and thermistor. For power supply are DC-DC converters used.
49

Testování MEMS gyroskopů / Testing of MEMS gyroscopes

Hasík, Stanislav January 2016 (has links)
This diploma thesis presents theoretical information regarding MEMS gyroscopes their parameters and designs. The description of measurement chain be used for testing of MEMS gyroscopes in Honeywell International s.r.o. is presented. Special focus is devoted to: the Polytec MSA-500 system, the Standa goniometers and their controller, Peltier cell and its driver. The practical part of this thesis contains the description of the thermal control system and also the description of the developed “Measurement system” in the LabVIEW software which is used for controlling the goniometers position and the Peltier cell. The system is able to fully control two goniometer stages, align the surface of tested MEMS device to orthogonal position with respect to the Polytec MSA-500 measurement head and also control the temperature of the tested device. The last part of this thesis presents the tests of the MEMS gyroscope parameters with special focus to the MEMS gyroscope angle random walk and the bias dependence on the vacuum quality of the structure environment.
50

Experimental and numerical studies of electrothermal phenomena in micro-scale thermoelectric systems

Lara Ramos, David Alberto 19 March 2021 (has links)
In recent decades the development of technologies capable to offer highly localized and precise temperature control has received increasing attention due to their relevance and applicability in numerous engineering fields. Multiple scientific papers have been written that focus on the enhancement of the performance of thermoelectric materials and micro-devices. This Ph.D. thesis in the field of Mechanical Engineering pursues three main research goals regarding electrothermal phenomena: (1) To provide an optimization design strategy for micro-thermoelectric coolers by analyzing the interplay between electrical and thermal fluxes during device operation. (2) To analyze the suitability of a device, based on micro-thermoelectric coolers, for controlling the thermal environment in microbiological systems. (3) To develop an experimental technique, based on optical pump-probe thermal imaging, to extract the thermal conductivity anisotropy of thin films. For this purpose, numerical simulations and experiments were carried out. The results show, that the design of micro-thermoelectric devices must take into account the impact of parameters that are typically neglected in the construction of macro scale devices. Poorly designed parameters, such as the metallic contacts, the distance between thermoelectric elements and their interaction with the substrate, carry severe reductions of the performance of micro-thermoelectric devices. It is demonstrated that the optimal performance is achieved when the thermoelectric legs are properly dimensioned, so that a balance of the Fourier and Joule fluxes is reached. Numerical analyses prove that micro-thermoelectric coolers offer a feasible alternative to overcome the current spatial and temperature limitations of conventional technologies and therefore enable to investigate the thermal environment of biological systems at the micro-scale. Guidelines for the implementation of the experimental platform are provided. The evaluation of the numerical and experimental data proves that optical pump-probe thermal imaging is suitable to characterize both the in-plane and the through-plane thermal conductivity of thin films. The experimental conditions to extract the anisotropy of the sample under study are determined. The outcome of this work yields new insights into electrothermal phenomena at the micro-scale and thus creates new routes in the design, fabrication and characterization of micro- thermoelectric materials and devices.:Acknowledgements IV Erklärung der Urheberschaft VI Summary VII Zusammenfassung VIII Table of content IX List of figures XI List of tables XIV Abbreviations and symbols XV 1 Introduction 1 1.1 Motivation 1 1.2 Outline of the thesis 4 1.2.1 Chapter 2 - Fundamentals 4 1.2.2 Chapter 3 - Design guidelines of micro-thermoelectric coolers 4 1.2.3 Chapter 4 - Development of a platform for biological systems experimentation 4 1.2.4 Chapter 5 - Development of a technique for thermal transport characterization in thin films 5 1.2.5 Chapter 6 - Main conclusion and future research 5 1.3 Main research objectives 5 2 Fundamentals 7 2.1 Thermoelectric phenomena 7 2.2 Performance estimation of micro-thermoelectric coolers 10 2.3 Finite element modelling 12 2.3.1 Introduction to finite element modelling 12 2.3.2 Finite element modelling of thermoelectric phenomena 17 2.4 Thermoreflectance imaging microscopy 19 3 Design guidelines of micro-thermoelectric coolers 26 3.1 Introduction 26 3.2 Micro-thermoelectric coolers: an alternative for thermal management 28 3.3 Analysis approach 29 3.3.1 Input current optimization 31 3.3.2 Metallic contacts 32 3.3.3 Leg pair geometry 35 3.3.4 Fill factor 38 3.3.5 Experimental characterization of µTECs 41 3.4 Summary 44 4 Development of a platform for biological systems experimentation 46 4.1 Introduction 46 4.2 Thermal analysis on biological systems 48 4.3 Platform conceptual proposal 50 4.4 Analysis approach 52 4.4.1 Input current optimization 52 4.4.2 Fill material 54 4.4.3 Thermotaxis 55 4.4.4 Top material 56 4.4.5 Cold spot optimization 58 4.5 Experimental platform construction 59 4.6 Summary 62 5 Development of a technique for thermal transport characterization in thin films 64 5.1 Introduction 64 5.2 Thermal anisotropy characterization in thin films 65 5.3 Experimental apparatus 66 5.4 Experimental measurements 69 5.5 Analysis approach 72 5.5.1 Thermal conductivity anisotropy analysis 76 5.5.2 Effect of the laser power on the temperature distribution 79 5.5.3 Enhancement of the system sensitivity 80 5.6 Summary 83 6 Main conclusion and future research 85 6.1 Main conclusion 85 6.2 Outlook 88 7 References 89 8 Scientific output 97 8.1 Publications in peer review journals 97 8.2 Selected conference abstracts 98 9 Curriculum vitae 99

Page generated in 0.0265 seconds