• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 21
  • 12
  • 11
  • 10
  • 7
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 151
  • 22
  • 17
  • 17
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Experimentální studium využití sondových metod pro diagnostiku nízkoteplotního zamagnetovaného plazmatu / Experimental study of the use of probe methods for diagnostic of low-temperature magnetized plasma

Zanáška, Michal January 2015 (has links)
The ball-pen probe is a relatively new diagnostic method, that has been designed for direct measurement of plasma potential in magnetized plasmas. Nowadays, it is routinely used at several high-temperature plasma devices in Europe and it has been tested also in conditions of low-temperature plasma, which are substantially different from that of high-temperature plasma. The measurements performed so far showed, that ball-pen probe could be used also in low-temperature plasma. However, more measurements were needed to prove the applicability of ball-pen probe. Therefore, the main aim of this work is to compare the method of ball-pen probe with simultaneous measurements using Langmuir and emissive probe. Measurements were performed in DC discharge of cylindrical magnetron at various discharge conditions and radial positions of probes. Powered by TCPDF (www.tcpdf.org)
62

EVALUATING MITIGATION STRATEGIES TO PROMOTE RECOVERY FROM ACUTE HYPERTHERMIA IN SWINE

Kouassi R Kpodo (8088257) 06 December 2019 (has links)
Heat stress (HS) is one of the consequential important problems facing the swine industry. The negative effects of HS include reduced growth performance, reproductive efficiency, and carcass quality as well as increased morbidity and mortality. Although, the swine industry has developed several abatement strategies (i.e., fans, cooling pads, sprinklers, etc.), these approaches may be ineffective in the future as global temperatures continue to rise and the frequency of more severe heat waves increases in regions where animal agriculture is prevalent. These extreme heat events put pigs (especially those approaching market weight) at risk for acute hyperthermia that can lead to death unless body temperature is rapidly returned to euthermia and thermoregulatory function is restored.Therefore, evaluating mitigation strategies to promote recovery from acute hyperthermia is of utmost importance for improving pigs’ health and well-being and ensuring profitability and food security. In four experiments, the existence of microclimates in grow-finish barns during late summer was ascertained and a rapid cooling technique using cold water dousing and feed removal to promote recovery from acute hyperthermia in pigs was evaluated. In the first study, it was determined that microclimates exist in grow-finish barns and that pigs raised in pens that were not located directly below air inlets and ventilation fans had greater body temperature and reduced feed efficiency despite similarities in the in-barn ambient temperature and relative humidity. These data exemplifythe importance of adequate ventilation systems in swine barns and the impact of microclimates on pigs’ health and productivity during warm summer months. In the second study, grow-finish pigs that did not have feed access were exposed to acute HS and then rapidly or gradually cooled. Following the acute HS and recovery phase, all pigs were maintained under thermoneutral conditions and then euthanized over three days to determine the temporal effects of the cooling treatment on body temperature and intestinal integrity. The results showed that rapid cooling following acute hyperthermia in pigswas effective in returning body temperature to euthermia more rapidly compared to gradual cooling and rapid cooling prevented further intestinal damage. Based on these results, it was hypothesized that feed removal may have played a role in the effectiveness of rapid cooling. Therefore, a third experiment was conducted in which grow-finish pigs with or without access to feed were exposed to an acute HS challenge and then rapidly cooled. This study concluded that feed access was a determinant factor in the cooling outcome, as the gastrointestinal temperature returned to euthermia during the rapid cooling period more rapidly when feed was removed. Finally, a fourth study was conducted to evaluate the effects of feed removal in the absence of rapid cooling on the systemic inflammatory response and short-term growth performance of grow-finish pigs. However, it was determined that feed removal alone did not reduce the inflammatory response as expected. Overall, these studies demonstrate the risk forgrow-finish pigs during summer heat events and the potential use of rapid cooling in combination with feed removal for promoting recovery from acute hyperthermia in pigs.
63

The Reading and Writing Connection: Merging Two Reciprocal Content Areas

Moran, Renee, Billen, Monica 01 January 2014 (has links)
The purpose of this article is make connections between two content areas, reading and writing, which have traditionally been separated and consider the relationship between their theoretical underpinnings. Based on their reciprocal nature, the authors posit that students could greatly benefit by reading and writing being taught simultaneously. Relying on this premise, this article provides the reader with three practical strategies that could be applied in the literacy classroom to intertwine reading and writing. These practical strategies include: classroom blogs, graphic depictions, and pen pal responses to literature.
64

From data exploration to presentation : designing new systems and interaction techniques to enhance the sense-making process / De l'exploration des données à la présentation : concevoir de nouveaux systèmes et techniques d'interaction pour améliorer la création de sens à partir de données

Romat, Hugo 03 October 2019 (has links)
Au cours de la dernière décennie, la quantité de données n'a cessé d'augmenter. Ces données peuvent provenir de sources variées, telles que des smartphones, des enregistreurs audio, des caméras, des capteurs, des simulations, et peuvent avoir différentes structures. Bien que les ordinateurs puissent nous aider à traiter ces données, c'est le jugement et l'expertise humaine qui les transforment réellement en connaissances. Cependant, pour donner un sens à ces données de plus en plus diversifiées, des techniques de visualisation et d'interaction sont nécessaires. Ce travail de thèse contribue de telles techniques pour faciliter l'exploration et la présentation des données, lors d'activités visant à faire sens des données. Dans la première partie de cette thèse, nous nous concentrons sur les systèmes interactifs et les techniques d'interaction pour aider les utilisateurs à faire sens des données. Nous étudions comment les utilisateurs travaillent avec des contenus divers afin de leur permettre d'externaliser leurs pensées par le biais d'annotations digitales. Nous présentons notre approche avec deux systèmes. Le premier, ActiveInk, permet l'utilisation naturelle du stylet pour la lecture active, lors d'un processus d'exploration de données. Dans le cadre d'une étude qualitative menée auprès de huit participants, nous contribuons des observations sur les comportements de la lecture active au cours de l'exploration des données, et, des principes aidant les utilisateurs à faire sens des données.Le second système, SpaceInk, est un espace de conception de techniques en utilisant le stylet et les gestes, qui permet de créer de l'espace pour les annotations, pendant la lecture active, en ajustant dynamiquement le contenu du document. Dans la deuxième partie de cette thèse, nous avons étudié les techniques permettant de représenter visuellement les éléments de réponses aux questions quand les utilisateurs essaient de faire sens des données. Nous nous concentrons sur l'une des structures de données les plus élaborées : les réseaux multi-variés, que nous visualisons à l'aide de diagrammes noeuds-liens. Nous étudions comment permettre un processus de conception itératif flexible lors de la création de diagrammes nœuds-liens pour les réseaux multi-variés. Nous présentons d'abord un système, Graphies, qui permet la création de visualisations expressives de diagrammes noeuds-liens en fournissant aux concepteurs un environnement de travail flexible qui rationalise le processus créatif et offre un support efficace pour les itérations rapides de conception. Allant au-delà de l'utilisation de variables visuelles statiques dans les diagrammes nœuds-liens, nous avons étudié le potentiel des variables liées au mouvement pour encoder les attributs des données. En conclusion, nous montrons dans cette thèse que le processus visant à faire sens des données peut être amélioré à la fois dans le processus d'exploration et de présentation, en utilisant l'annotation comme nouveau moyen de transition entre exploration et externalisation, et en suivant un processus itératif et flexible pour créer des représentations expressives de données. Les systèmes qui en résultent établissent un cadre de recherche où la présentation et l'exploration sont au cœur des systèmes de données visuelles. / During the last decade, the amount of data has been constantly increasing. These data can come from several sources such as smartphones, audio recorders, cameras, sensors, simulations, and can have various structure. While computers can help us process these data, human judgment and domain expertise is what turns the data into actual knowledge. However, making sense of this increasing amount of diverse data requires visualization and interaction techniques. This thesis contributes such techniques to facilitate data exploration and presentation, during sense-making activities. In the first part of this thesis, we focus on interactive systems and interaction techniques to support sense-making activities. We investigate how users work with diverse content in order to make them able to externalize thoughts through digital annotations. We present our approach with two systems. The first system, ActiveInk enables the natural use of pen for active reading during a data exploration process. Through a qualitative study with eight participants, we contribute observations of active reading behaviors during data exploration and design principles to support sense-making. The second system, SpaceInk, is a design space of pen & touch techniques that make space for in-context annotations during active reading by dynamically reflowing documents. In the second part, we focus on techniques to visually represent insights and answers to questions that arise during sense-making activities. We focus on one of the most elaborate data structures: multivariate networks, that we visualize using a node-link diagram visualization. We investigate how to enable a flexible iterative design process when authoring node-link diagrams for multivariate networks. We first present a system, Graphies, that enables the creation of expressive node-link diagram visualizations by providing designers with a flexible workflow that streamlines the creative process, and effectively supports quick design iterations. Moving beyond the use of static visual variables in node-link diagrams, we investigated the use of motion to encode data attributes. To conclude, we show in this thesis that the sense-making process can be enhanced in both processes of exploration and presentation, by using ink as a new medium to transition between exploration and externalization, and by following a flexible, iterative process to create expressive data representations. The resulting systems establish a research framework where presentation and exploration are a core part of visual data systems.
65

Closed-loop nanopatterning and characterization of polymers with scanning probes

Saygin, Verda 24 May 2023 (has links)
There is a need to discover advanced materials to address the pressing challenges facing humanity, however there are far too many combinations of material composition and processing conditions to explore using conventional experimentation. One powerful approach for accelerating the rate at which materials are explored is by miniaturizing the scale at which experiments take place. Reducing the size of samples has been tremendously productive in biomedicine and drug discovery through standardized formats such as microwell plates, and while these formats may not be the most appropriate for studying polymeric materials, they do highlight the advantages of studying materials in ultra-miniaturized volumes. However, precise and controlled methods for handling diverse samples at the sub-femtoliter-scale have not been demonstrated. In this thesis, we establish that scanning probes can be used as a technique for realizing and interrogating sub-femtoliter scale polymer samples. To do this, we develop and apply methods for patterning materials with control over their size and composition and then use these methods to study material systems of interest. First, we develop a closed-loop method for patterning liquid samples using scanning probes by utilizing tipless cantilevers capable of holding a discrete liquid drop together with an inertial mass sensing scheme to measure the amount of liquid loaded on the probe. Using these innovations, we perform patterning with better than 1% mass accuracy on the pL-scale. While dispensing fluid with tipless cantilevers is successful for patterning pL-scale features and can be considered a candidate for robust nanoscale manipulation of liquids for high-throughput sample preparation, the minimum amount of liquid that can be transferred using this method is limited by number of factors. Thus, in the second section of this thesis, we explore ultrafast cantilevers that feature spherical tips and find them capable of patterning aL-scale features with in situ feedback. The development of methods of interrogating polymers at the pL-scale led us to explore how the mechanical properties of photocurable polymers depend on processing conditions. Specifically, we investigate the degree to which oxygen inhibits photocrosslinking during vat polymerization and how this effect influences the mechanical properties of the final material. We explore this through a series of macroscopic compression studies and AFM-based indentation studies of the cured polymers. Ultimately, the mechanical properties of these systems are compared to pL-scale features patterned using scanning probe lithography and we find that not only does oxygen prevent full crosslinking when it is present during the post-print curing, but the presence of oxygen during printing itself irreversibly softens the material. In addition to developing new methods for realizing ultra-miniaturized samples for study, the novel scanning probe methods in this work have led to new paradigms for rapidly evaluating complex interactions between material systems. In particular, we present a novel method to quantitatively investigate the interaction between the metal-organic frameworks (MOFs) and polymers by attaching a single MOF particle to a cantilever and studying the interaction force between this MOF and model polymer surfaces. Using this approach, we find direct evidence supporting the intercalation of polymer chains into the pores of MOFs. This work lays the foundation for directly characterizing the facet-specific interactions between MOFs and polymers in a high-throughput manner sufficient to fuel a data-driven accelerated material discovery pipeline. Collectively, the focus of this thesis is the development and utilization of novel scanning probe methods to collect data on extremely small systems and advance our understanding of important classes of materials. We expect this thesis to provide the foundation needed to transform scanning probe systems into instruments for performing reliable nanochemistry by combining controlled and quantitative sample preparation at the nanoscale and high-throughput characterization of materials. To conclude, we present an outlook about the necessary technological advancements and promising directions for materials innovations that stem from this work.
66

Effect of Prepartum Vaccination and Pen Change with an Acidogenic Diet on Lying Time, Metabolic Profile, and Immunity in Holstein Dairy Cows

Menichetti, Bernardo T. 30 September 2021 (has links)
No description available.
67

Setpad: A Sketch-based Tool For Exploring Discrete Math Set Problems

Cossairt, Travis 01 January 2012 (has links)
We present SetPad, a new application prototype that lets computer science students explore discrete math problems by sketching set expressions using pen-based input. Students can manipulate the expressions interactively with the tool via pen or multi-touch interface. Likewise, discrete mathematics instructors can use SetPad to display and work through set problems via a projector to better demonstrate the solutions to the students. We discuss the implementation and feature set of the application, as well as results from both an informal perceived usefulness evaluation for students taking a computer science foundation exam in addition to a formal user study measuring the effectiveness of the tool when solving set proof problems. The results indicate that SetPad was well received, allows for efficient solutions to proof problems, and has the potential to have a positive impact when used as as an individual student application or an instructional tool.
68

Vectorpad: A Tool For Visualizing Vector Operations

Bott, Jared 01 January 2009 (has links)
Visualization of three-dimensional vector operations can be very helpful in understanding vector mathematics. However, creating these visualizations using traditional WIMP interfaces can be a troublesome exercise. In this thesis, we present VectorPad, a pen-based application for three-dimensional vector mathematics visualization. VectorPad allows users to define vectors and perform mathematical operations upon them through the recognition of handwritten mathematics. The VectorPad user interface consists of a sketching area, where the user can write vector definitions and other mathematics, and a 3D graph for visualization. After recognition, vectors are visualized dynamically on the graph, which can be manipulated by the user. A variety of mathematical operations can be performed, such as addition, subtraction, scalar multiplication, and cross product. Animations show how operations work on the vectors. We also performed a short, informal user study evaluating the user interface and visualizations of VectorPad. VectorPad's visualizations were generally well liked; results from the study show a need to provide a more comprehensive set of visualization tools as well as refinement to some of the animations.
69

Internet of Things connected PenPlotter / Sakernas Internet uppkopplad skrivmaskin

Burtus, Roger, Lundin, William January 2022 (has links)
The purpose of this project is to build a Pen Plotter machine and implement IoT control. The project aims to analyze the technical aspects that are affected by the implementation of IoT. The work in this project involves the construction of the electro-mechanical design and software used in the Pen Plotter. The project resulted in a working Pen Plotter prototype, which was controllable via IoT. The implementation of IoT made the construction of the Pen Plotter more complex and required additional components such as an SD card, Wi-Fi module and a second micro-controller. At the same time, the machine was easier to operate. The conclusion of the project is that while there are benefits of implementing IoT in terms of simplified control, it is hard to customize the functionality of the Pen Plotter. / Syftet med detta projekt är att designa och bygga en skrivmaskin som är styrbar via IoT. Projektets syfte är att undersöka vilka tekniska aspekter som påverkas av att implementera IoT. Projektet har involverat designen av skrivmaskinen och programmering av mjukvaran till mikrokontrollerna. Resultatet av projektet är en fungerande skrivmaskin prototyp som är kontrollerbar via IoT. Implementationen av IoT medför att flera extra komponenter behövs, blanda annat SD-kort, internetmodul och en extra mikrokontroller. Detta gör prototypen mer komplicerad att bygga. Slutsatsen av detta projekt är att IoT kontrollen har sina fördelar som exempelvis lättare användning, men funktionerna som IoT medför kan vara svåra att modidifiera.
70

Aircraft and Satellite Remote Sensing for Biophysical Analysis at Pen Island, Northwestern Ontario

Kozlovic, Nancy Jean 02 1900 (has links)
The capabilities of a number of remote-sensing techniques for biophysical mapping in the subarctic have been examined at Pen Island in northwestern Ontario. After a two week field reconnaissance, colour infrared aerial photography was studied and a detailed biophysical map of the area was produced. Using this knowledge LANDSAT satellite data of the site were investigated. In a visual analysis of the data, the majority of the units identified in the airphoto interpretation were detected, and these were distinguished primarily by their spectral characteristics. Digital analysis of the satellite data using the Bendix MAD system allowed many of the classes of the earlier studies to be delineated and also permitted the classification to be readily extended beyond the original site. In both LANDSAT analyses specific biophysical units could be mapped from the satellite data but could not be identified without the airphoto interpretation. / Thesis / Master of Science (MSc)

Page generated in 0.0281 seconds