Spelling suggestions: "subject:"pentacene"" "subject:"pentacen""
1 |
Design and Synthesis of Organic Materials for OptoelectronicsPalayangoda, Sujeewa Senarath 05 November 2008 (has links)
No description available.
|
2 |
SYNTHESIS AND DEVICE CHARACTERIZATION OF FUNCTIONALIZED PENTACENES AND ANTHRADITHIOPHENESSubramanian, Sankar 01 January 2008 (has links)
Research on pi-conjugated organic materials in the recent past has produced enormous developments in the field of organic electronics and it is mainly due to their applications in electronic devices such as organic field effect transistors (OFETs), organic light emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). The primary goal of this research work is to design and synthesize high performing charge transport organic semiconductors. One of the criteria for better performance of the organic thin film transistor (OTFT) is to have high uniform thin film morphology of the organic semiconductor layer on the substrate. The first project in this dissertation has been directed towards improving the thin film morphology of the functionalized pentacenes through liquid crystalline behaviour. The results have suggested the possibility of thermotropic liquid crystalline phases in 6,13-bis(diisopropylhexylsilylethynyl) pentacene which has no pi-stacking in its solid state and the presence of silyl group at the peri-position is crucial for the stability of the functionalized pentacenes. In the second project, i have investigated the effect of alkyl groups with varying chain length on the anthradithiophene chromophore on the performance of the charge transporting devices. Organic blend cell based on solution processable 2,8-diethyl-5,12-bis(triethylsilylethynyl) anthradithiophene has showed 1% power conversion efficiency and the performance is mainly attributed to the large crystalline phase segregation of the functionalized anthradithiophene from the amorphous soluble fullerene derivative matrix. OTFT study on alkyl substituted functionalized anthradithiophenes suggested the need of delegate balance between thin film morphology and the crystal packing. Third project has been directed towards synthesizing halogen substituted functionalized anthradithiophenes and their influence in the performance of OFETs. OTFT made of 2,8-difluoro-5,12-bis(triethylsilylethynyl) anthradithiophene produced devices with thin film hole mobilities greater than 1 cm2/Vs. The result suggested that the device is not contact limited rather this high performance OTFTs are due to the contact induced crystallinity of the organic semiconductor.
|
3 |
NOVEL SOLUTION PROCESSABLE ACCEPTORS FOR ORGANIC PHOTOVOLTAIC APPLICATIONSShu, Ying 01 January 2011 (has links)
The field of organic electronics has become an increasingly important field of research in recent years. Organic based semiconductors have the potential for creating inexpensive, solution processed devices on flexible substrates. Some of the applications of organic semiconductors include organic field effect transistors, organic light emitting diodes and organic photovoltaics.
Functionalized pentacenes have been proven to be viable donor materials for use in organic photovoltaic devices. The goal of this research is to synthesize and test the viability of novel electron deficient pentacenes and pentacene based materials as acceptors to be used as drop-in replacements for PCBM in bulk-heterojunction organic solar cells.
Our goal was to tune and improve the efficiencies of these solar cells in a two pronged approach. First we tuned the open circuit voltage of these devices by determining the optimal energy levels of these acceptors by varying the number of electron withdrawing substituents on the acene core. We also tuned the short circuit current by chemically altering the solid state packing and optimizing device processing conditions. A preliminary structure-property relationship of these small molecule acceptors and photovoltaic device efficiency was established as a result.
|
Page generated in 0.0402 seconds