• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 30
  • 28
  • 22
  • 15
  • 13
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solid-supported aromatic nitrations

Lancaster, Norman Llewellyn January 2000 (has links)
The efficacy of the claycop system in the nitration and the dinitration of toluene has been investigated.Comparison of regioselectivity and of rate constant with homogeneous nitric acid nitration was made. The use of ion-exchanged montmorillonite clay as a catalyst for acetyl nitrate nitration was studied. The system was found to enhance Para selectivity in the nitration of toluene and to catalyse the reaction. Additionally, the catalyst was shown to be recyclable. The reaction of toluene was too fast to allow kinetic study. However, kinetic study was possible,using chlorobenzene as substrate.Again, the system was found to decrease both the reaction time and the o-/ p- ratio. It was possible to demonstrate a dependence of rate constant upon mass of clay. The effect of the counter ion was investigated and the use of trifluoroacetyl anhydride was studied. A new system for aromatic nitration has been developed in this work using zeolite with dinitrogenp entoxide.A series of zeolites were screened in the nitration of onitrotoluene, with the H-faujasites showing the quickest reaction times and highest degree of regioselectivity. The silica/ alumina ratio of the faujasite used was varied and this was shown to have an effect on regioselectivity. However, reactions were too fast for kinetic study. The faujasite/ dinitrogen pentoxide system was used in the nitration of some deactivated benzenes using these substrates allowed kinetic studies to be made and the order in each component to be determined. It was found that nitration was zeroth order in dinitrogen pentoxide, that the reaction obeyed a first order rate law, and that the first order rate constant was proportional to the mass of zeolite used. Comparison of the relative rates of nitration of 1-chloro-2-nitrobenzene1, -chloro-4-nitrobenzene and nitrobenzeneb y this system to the relative rate constants of nitronium ion nitration was made. The similarity suggested that the mechanism of nitration by faujasite/d initrogen pentoxide might involve nitronium ion transfer.Amongst the H-faujasites of different silica/ alumina ratio, the rate constant was shown to increase with the aluminium content. A mechanism is proposed in which zeolite protons (present in proportion to the aluminium atoms) are first replaced by nitronium ions. The latter are transferred to the aromatic in the rate-determining step. The use of non-chlorinated solvents and the recycling of zeolite were both studied, and the nitration of 2,6-dinitrotoluene was attempted. The use of the faujasite/ dinitrogen pentoxide system was extended to the nitration of nitrogen containing aromatic heterocycles direct C-nitration of quinolone was not possible, only N-nitration. However, pyrazole was converted to 1,4-dinitropyrazole quickly and cleanly under mild conditions. It was shown that the N-nitration occurred instantly, followed by slower C-nitration. The kinetics of the second nitration were studied and comparison with deactivated benzenes was made.
2

Heterogeneous N₂O₅ chemistry in the Houston atmosphere

Simon, Heather Aliza, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2008. / Vita. Includes bibliographical references.
3

Airborne measurements of organic acids, inorganic acids and other trace gas species in the remote regions of the Northern Hemisphere using a Chemical Ionisation Mass Spectrometer (CIMS)

Jones, Benjamin January 2016 (has links)
Formic acid and nitric acid have been found to contribute to aerosol formation and are key components of acidity in the troposphere. Tropospheric measurements of these species are often limited, resulting in major uncertainties when assessing their effects on the climate. Current global chemistry-transport models significantly under-predict formic acid concentrations, particularly in the mid-to-high latitudes of the Northern Hemisphere. Furthermore, large discrepancies exist in the role played by dinitrogen pentoxide on nitric acid production between two recently documented models assessing the global nitric acid budget. In order to accurately constrain the budget of these acids in the mid-to-high latitudes of the Northern Hemisphere, it is crucial that these uncertainties are addressed. In this work, airborne measurements of formic acid, nitric acid and dinitrogen pentoxide are presented from across different regions of the Northern Hemisphere to investigate direct and indirect sources contributing to the formic acid and nitric acid regional budgets. Measurements were collected using a Chemical Ionisation Mass Spectrometer (CIMS) fitted to the Facility for Atmospheric Airborne Measurements (FAAM) BAe-146 aircraft. Formic acid measurements within the European Arctic during March and July 2012 would indicate ocean sources dominate over terrestrial sources irrespective of seasonality. CH2I2 photolysis and oxidation was hypothesised as a marine source of formic acid. Modelled estimates would indicate the CH2I2 reaction route may represent a significant summer marine source of formic acid within the Fenno-Scandinavian Arctic. Additionally, low altitude aircraft measurements taken within the Fenno-Scandinavian Arctic over regions occupied by wetlands in August 2013 were used to calculate a formic acid surface flux. Results would suggest formic acid emission from wetlands may represent up to 37 times greater than its globally inferred estimate. A flux measurement conducted over a comparable region in September 2013 observed a negative flux, indicating a change of this region from a net source to a net sink of formic acid. The inconsistency of this regional wetland source confirms the need for in-depth studies on formic acid emission from wetlands, in order to better understand its contribution to the regional and global formic acid budget. In a separate study, significant daytime elevations of N2O5 and HNO3 concentrations were observed within identified biomass burning plumes off the eastern coast of Canada. In-plume correlations between N2O5 and HNO3 concentrations observed within these environments suggest N2O5 was acting as additional daytime source of gaseous HNO3 when subjected to photolytically-limited conditions. This result has important implications to ozone production and provides evidence for an additional daytime source of nitric acid, which must be included in chemistry models calculating the global nitric acid budget.
4

Síntese por Electrospinning de fibras de Nb2O5 e caracterização microestrutural e de propriedades ópticas

Leindecker, Gisele Cristina January 2013 (has links)
O objetivo deste estudo foi produzir, por electrospinning, fibras de pentóxido de nióbio(Nb2O5), usando como precursor o nióbio metálico. A solução utilizada para o electrospinning foi preparada pela dissolução do precursor em ácido fluorídrico (HF), seguida da adição de ácido acético e da solução polimérica de polivinilpirrolidona (PVP). A solução final foi submetida ao processo de electrospinning com tensão elétrica variando de 14 a 16 kV, distância entre coletor e capilar de 13 cm e fluxo de 1,5 mL/h. As fibras obtidas foram submetidas a tratamento térmico às temperaturas de 600, 700 e 800°C por um período de 1 hora, com taxa de aquecimento de 0,8°C/min. As fibras foram caracterizadas através de análises térmicas, espectroscopia de infravermelho por transformada de Fourier (FTIR), difração de raios X (DRX), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia de reflectância difusa (ERD). Também foram realizadas medidas de tamanho de cristalito pela fórmula de Scherrer, diâmetro médio com auxílio do aplicativo Image Tool e área superficial pelo modelo proposto por Brunnauer, Emmet e Teller (BET). Os resultados indicaram que foram formadas fibras da fase hexagonal (TT- Nb2O5), e que o aumento da tensão aplicada provocou uma redução no diâmetro das fibras, sendo 90 nm, o menor diâmetro médio obtido para as fibras produzidas aplicando uma tensão de 16 kV e sinterização a 700 ºC. O tamanho de cristalito médio aumentou de 18,48 para 36,08 nm, com o aumento da temperatura de tratamento térmico, resultando em queda da área superficial de 43,6 para 31,3 m2/g. Os valores de band gap medidos variaram de 3,32 a 3,57 eV, indicando que as nanofibras são semicondutores de gap largo. / This study aimed to produce by electrospinning, niobium pentoxide (Nb2O5) fibers, using metallic niobium as precursor. The solution used for electrospinning was prepared by dissolving the precursor in hydrofluoric acid (HF), followed by addition of acetic acid and solution of PVP polymer. The final solution was subjected to the process of electrospinning with voltage ranging from 14 to 16 kV, the distance between collector and capillary was 13 cm and flow of 1.5 mL / h. Fibers obtained were subjected to heat treatment at temperatures of 600, 700 and 800 ° C for a period of 1 hour, at a heating rate of 0.8 °C / min. Finally, Nb2O5 fibers were characterized by thermal analysis, Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (ERD). The crystallite size was measured by the Scherrer equation, the average diameter was obtained by Image Tool and the surface area by the model proposed by Brunnauer, Emmet and Teller (BET). The results showed that fibers were formed and presented hexagonal phase (TT-Nb2O5), and that the increase of the voltage caused a decrease in fiber diameter, with the smallest average diameter of 90 nm, obtained for fibers produced by applying a voltage of 16 kV and sintering at 700 °C. The average crystallite size increased from 18.48 to 36.08 nm with increasing calcination temperature, resulting in decreased surface area of 43.568 to 31.344 m2 / g. The band gap values measured ranged from 3.32 to 3.57 eV, indicating that the nanofibers are wide band gap semiconductors.
5

Síntese por Electrospinning de fibras de Nb2O5 e caracterização microestrutural e de propriedades ópticas

Leindecker, Gisele Cristina January 2013 (has links)
O objetivo deste estudo foi produzir, por electrospinning, fibras de pentóxido de nióbio(Nb2O5), usando como precursor o nióbio metálico. A solução utilizada para o electrospinning foi preparada pela dissolução do precursor em ácido fluorídrico (HF), seguida da adição de ácido acético e da solução polimérica de polivinilpirrolidona (PVP). A solução final foi submetida ao processo de electrospinning com tensão elétrica variando de 14 a 16 kV, distância entre coletor e capilar de 13 cm e fluxo de 1,5 mL/h. As fibras obtidas foram submetidas a tratamento térmico às temperaturas de 600, 700 e 800°C por um período de 1 hora, com taxa de aquecimento de 0,8°C/min. As fibras foram caracterizadas através de análises térmicas, espectroscopia de infravermelho por transformada de Fourier (FTIR), difração de raios X (DRX), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia de reflectância difusa (ERD). Também foram realizadas medidas de tamanho de cristalito pela fórmula de Scherrer, diâmetro médio com auxílio do aplicativo Image Tool e área superficial pelo modelo proposto por Brunnauer, Emmet e Teller (BET). Os resultados indicaram que foram formadas fibras da fase hexagonal (TT- Nb2O5), e que o aumento da tensão aplicada provocou uma redução no diâmetro das fibras, sendo 90 nm, o menor diâmetro médio obtido para as fibras produzidas aplicando uma tensão de 16 kV e sinterização a 700 ºC. O tamanho de cristalito médio aumentou de 18,48 para 36,08 nm, com o aumento da temperatura de tratamento térmico, resultando em queda da área superficial de 43,6 para 31,3 m2/g. Os valores de band gap medidos variaram de 3,32 a 3,57 eV, indicando que as nanofibras são semicondutores de gap largo. / This study aimed to produce by electrospinning, niobium pentoxide (Nb2O5) fibers, using metallic niobium as precursor. The solution used for electrospinning was prepared by dissolving the precursor in hydrofluoric acid (HF), followed by addition of acetic acid and solution of PVP polymer. The final solution was subjected to the process of electrospinning with voltage ranging from 14 to 16 kV, the distance between collector and capillary was 13 cm and flow of 1.5 mL / h. Fibers obtained were subjected to heat treatment at temperatures of 600, 700 and 800 ° C for a period of 1 hour, at a heating rate of 0.8 °C / min. Finally, Nb2O5 fibers were characterized by thermal analysis, Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (ERD). The crystallite size was measured by the Scherrer equation, the average diameter was obtained by Image Tool and the surface area by the model proposed by Brunnauer, Emmet and Teller (BET). The results showed that fibers were formed and presented hexagonal phase (TT-Nb2O5), and that the increase of the voltage caused a decrease in fiber diameter, with the smallest average diameter of 90 nm, obtained for fibers produced by applying a voltage of 16 kV and sintering at 700 °C. The average crystallite size increased from 18.48 to 36.08 nm with increasing calcination temperature, resulting in decreased surface area of 43.568 to 31.344 m2 / g. The band gap values measured ranged from 3.32 to 3.57 eV, indicating that the nanofibers are wide band gap semiconductors.
6

Síntese por Electrospinning de fibras de Nb2O5 e caracterização microestrutural e de propriedades ópticas

Leindecker, Gisele Cristina January 2013 (has links)
O objetivo deste estudo foi produzir, por electrospinning, fibras de pentóxido de nióbio(Nb2O5), usando como precursor o nióbio metálico. A solução utilizada para o electrospinning foi preparada pela dissolução do precursor em ácido fluorídrico (HF), seguida da adição de ácido acético e da solução polimérica de polivinilpirrolidona (PVP). A solução final foi submetida ao processo de electrospinning com tensão elétrica variando de 14 a 16 kV, distância entre coletor e capilar de 13 cm e fluxo de 1,5 mL/h. As fibras obtidas foram submetidas a tratamento térmico às temperaturas de 600, 700 e 800°C por um período de 1 hora, com taxa de aquecimento de 0,8°C/min. As fibras foram caracterizadas através de análises térmicas, espectroscopia de infravermelho por transformada de Fourier (FTIR), difração de raios X (DRX), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), espectroscopia de reflectância difusa (ERD). Também foram realizadas medidas de tamanho de cristalito pela fórmula de Scherrer, diâmetro médio com auxílio do aplicativo Image Tool e área superficial pelo modelo proposto por Brunnauer, Emmet e Teller (BET). Os resultados indicaram que foram formadas fibras da fase hexagonal (TT- Nb2O5), e que o aumento da tensão aplicada provocou uma redução no diâmetro das fibras, sendo 90 nm, o menor diâmetro médio obtido para as fibras produzidas aplicando uma tensão de 16 kV e sinterização a 700 ºC. O tamanho de cristalito médio aumentou de 18,48 para 36,08 nm, com o aumento da temperatura de tratamento térmico, resultando em queda da área superficial de 43,6 para 31,3 m2/g. Os valores de band gap medidos variaram de 3,32 a 3,57 eV, indicando que as nanofibras são semicondutores de gap largo. / This study aimed to produce by electrospinning, niobium pentoxide (Nb2O5) fibers, using metallic niobium as precursor. The solution used for electrospinning was prepared by dissolving the precursor in hydrofluoric acid (HF), followed by addition of acetic acid and solution of PVP polymer. The final solution was subjected to the process of electrospinning with voltage ranging from 14 to 16 kV, the distance between collector and capillary was 13 cm and flow of 1.5 mL / h. Fibers obtained were subjected to heat treatment at temperatures of 600, 700 and 800 ° C for a period of 1 hour, at a heating rate of 0.8 °C / min. Finally, Nb2O5 fibers were characterized by thermal analysis, Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (ERD). The crystallite size was measured by the Scherrer equation, the average diameter was obtained by Image Tool and the surface area by the model proposed by Brunnauer, Emmet and Teller (BET). The results showed that fibers were formed and presented hexagonal phase (TT-Nb2O5), and that the increase of the voltage caused a decrease in fiber diameter, with the smallest average diameter of 90 nm, obtained for fibers produced by applying a voltage of 16 kV and sintering at 700 °C. The average crystallite size increased from 18.48 to 36.08 nm with increasing calcination temperature, resulting in decreased surface area of 43.568 to 31.344 m2 / g. The band gap values measured ranged from 3.32 to 3.57 eV, indicating that the nanofibers are wide band gap semiconductors.
7

Chemically modified Ta₂O₅ thin films for dynamic random access memory (DRAM) applications

Desu, Chandra S. 24 August 1998 (has links)
Increasing demand for high-density memories has necessitated the search for new materials with higher dielectric constants to satisfy the minimum charge storage density requirements. Several materials such as Ta₂O₅, BST¹, BBT² are being investigated to replace the currently used Si based oxide/nitride dielectrics. Among the materials under investigation, Ta₂O₅ is one of the most promising, especially from the fab compatibility point of view. Ta₂O₅ thin films offer a six-fold increase in dielectric constant compared to conventional dielectrics. However, the significant improvement in dielectric constant is offset by higher leakage currents compared to conventional dielectrics. Improvement in both, dielectric and insulating properties is required for the successful integration of Ta₂O₅ thin films into devices. In the current research work, it was demonstrated that by chemically modifying the tantalum pentoxide matrix, significant improvements in its electrical properties can be achieved which would enable the fabrication of a reliable high-density memory device. In the present work, the effects of Al addition on Ta₂O₅ thin films were systematically studied. The structural and electrical properties of these chemically modified thin films were investigated in detail to establish their potential for device applications. The effects on dielectric and insulating characteristics due to incorporation of Al in Ta₂O₅ matrix were studied in capacitor configuration. A metallorganic solution decomposition (MOSD) technique was used to deposit thin films onto Pt coated Si(100) substrates. The capacitors were fabricated by sputter depositing Pt electrodes on the top surface of the films. The dielectric and insulating properties of pure and modified Ta₂O₅ thin films and their dependence on film composition, processing temperature, and the thickness were discussed and an attempt was made to provide theoretical understanding for the experimental observations. The dielectric and insulating properties of Ta₂O₅ were found to be significantly modified by addition of Al. It was observed that Al addition has decreased the leakage currents approximately by an order of magnitude and improved thermal and bias stability characteristics of Ta₂O₅ capacitors. For example, the leakage currents in crystalline pure Ta₂O₅ thin films were found to be 4.5 x 10⁷ A/cm² in a 1MV/cm dc field which decreased to 3.4 x 10⁸ A/cm² for 10% Al modified Ta₂O₅ thin films. A typical dielectric constant of 42.5 was obtained for 10% Al modified Ta₂O₅ thin films. This is significantly higher compared to the commonly reported dielectric constant of 25 to 35 for Ta₂O₅ thin films. This enhancement was attributed to strong (100) orientation exhibited by both pure and modified Ta₂O₅ thin films. The high dielectric constant, low dielectric loss, low leakage currents and low temperature coefficient of capacitance suggest the suitability of Al modified Ta₂O₅ as a capacitor dielectric for future generation DRAM applications. ¹Barium strontium titanate, ²Barium bismuth tantalate / Master of Science
8

Investigation of Pt supported on carbon, ZrO2, Ta2O5 and Nb2O5 as electrocatalysts for the electro–oxidation of SO2 / Boitshoko Goitseone Modingwane

Modingwane, Boitshoko Goitseone January 2011 (has links)
The gradual depletion of and dependence on fossil fuels, air pollution and global warming have all accelerated the development of alternative energy systems which use hydrogen as an energy carrier. The hybrid sulphur cycle (HyS) is the foremost electrothermochemical process that can produce hydrogen as the energy carrier. The HyS cycle consists of two units, namely the sulphuric acid decomposition reactor and the sulphur dioxide electrolyser (SDE). The SDE is responsible for the SO2 electrooxidation to sulphuric acid and protons at the anode and the electro–reduction of protons to hydrogen at the cathode. This research study focuses on the kinetic data collected from the prepared catalysts for SO2 electro–oxidation at the anode. Platinum dispersed on carbon, niobium pentoxide, tantalum pentoxide and zirconium dioxide as electrocatalysts were prepared using sodium borohydride as a reducing agent. These electrocatalysts were characterized using transmission electron microscopy and x–ray diffraction. Cyclic voltammetry was used to study the electrochemical active surface area (EAS) and the results showed that Pt/ZrO2–C had a higher EAS area than Pt/Ta2O5–C, Pt/Nb2O5–C and Pt/C. The high EAS of Pt/ZrO2–C can be explained by the low crystal size however after a series of linear polarisation scans Pt/ZrO2–C experiences a much greater area loss than all the other catalysts. Linear polarisation scans for each of the catalysts revealed that the influence of increased temperature and sulphuric acid concentration were showed improved results. Levich and Koutecky–Levich plots revealed that the SO2 oxidation is a multistep reaction on all the prepared catalysts and that there are regions which are kinetic and diffusion controlled and diffusion–only controlled. Pt/Ta2O5–C catalysts exhibited superior catalytic activity and stability compared Pt/Nb2O5–C, Pt/ZrO2–C and Pt/C. The Pt/ZrO2–C exhibited the most inferior catalytic activity and stability. / Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2011.
9

Investigation of Pt supported on carbon, ZrO2, Ta2O5 and Nb2O5 as electrocatalysts for the electro–oxidation of SO2 / Boitshoko Goitseone Modingwane

Modingwane, Boitshoko Goitseone January 2011 (has links)
The gradual depletion of and dependence on fossil fuels, air pollution and global warming have all accelerated the development of alternative energy systems which use hydrogen as an energy carrier. The hybrid sulphur cycle (HyS) is the foremost electrothermochemical process that can produce hydrogen as the energy carrier. The HyS cycle consists of two units, namely the sulphuric acid decomposition reactor and the sulphur dioxide electrolyser (SDE). The SDE is responsible for the SO2 electrooxidation to sulphuric acid and protons at the anode and the electro–reduction of protons to hydrogen at the cathode. This research study focuses on the kinetic data collected from the prepared catalysts for SO2 electro–oxidation at the anode. Platinum dispersed on carbon, niobium pentoxide, tantalum pentoxide and zirconium dioxide as electrocatalysts were prepared using sodium borohydride as a reducing agent. These electrocatalysts were characterized using transmission electron microscopy and x–ray diffraction. Cyclic voltammetry was used to study the electrochemical active surface area (EAS) and the results showed that Pt/ZrO2–C had a higher EAS area than Pt/Ta2O5–C, Pt/Nb2O5–C and Pt/C. The high EAS of Pt/ZrO2–C can be explained by the low crystal size however after a series of linear polarisation scans Pt/ZrO2–C experiences a much greater area loss than all the other catalysts. Linear polarisation scans for each of the catalysts revealed that the influence of increased temperature and sulphuric acid concentration were showed improved results. Levich and Koutecky–Levich plots revealed that the SO2 oxidation is a multistep reaction on all the prepared catalysts and that there are regions which are kinetic and diffusion controlled and diffusion–only controlled. Pt/Ta2O5–C catalysts exhibited superior catalytic activity and stability compared Pt/Nb2O5–C, Pt/ZrO2–C and Pt/C. The Pt/ZrO2–C exhibited the most inferior catalytic activity and stability. / Thesis (M.Sc. (Chemistry))--North-West University, Potchefstroom Campus, 2011.
10

Oxidation and oxidative dehyrogenation of n-octane using V₂O₅ supported on hydroxyapatites.

Dasireddy, Venkata D. B. C. January 2012 (has links)
Vanadium pentoxide with loadings varying from 2.5-15 wt% was supported on hydroxyapatite (HAp) by the wet impregnation technique. The materials were characterized by techniques such as X-ray powder diffraction (XRD), Inductively coupled plasma-optical emission spectroscopy (ICP-OES), Brunauer Emmett Teller (BET) surface area measurement, Fourier Transformation- Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Temperature Programmed Desorption (TPD) and Temperature Programmed Reduction (TPR). From XRD and IR analyses, vanadium is found in the vanadium pentoxide phase for the lower loadings, whereas for weight loadings in excess of 10%, an additional pyrovanadate phase exists. Electron microscopy provides evidence of a homogenous distribution of the vanadium species on the hydroxyapatite. Oxidative dehydrogenation reactions carried out in a continuous flow fixed bed reactor showed that selectivity towards desired products was dependent on the vanadium concentration and the phase composition of the catalyst. Good selectivity towards octenes was achieved using the 2.5 wt% V₂O₅ on HAp loaded catalyst. There was a marked decrease in octene selectivity and a significant increase in the formation of C8 aromatics when higher loadings of vanadium were used. At a conversion of 24% at 450 ˚C, the 15 wt% V₂O₅ on HAp showed a selectivity of 72% towards octenes. A maximum selectivity of 10 % for C8 aromatics was obtained using the 15 wt% V₂O₅ on HAp catalyst at a conversion of 36 % at 550 ˚C. Vanadium pentoxide with 2.5 wt% and 10 wt% loading supported on Ca-HAp, Sr-HAp, Mg- HAp, Ba-HAp was tested at different temperatures with varying n-octane to oxygen ratios. The selectivity towards products depended on the hydroxyapatite support. Ca-HAp showed preference towards octenes, Sr-HAp towards aromatics, Mg-HAp towards oxygenates and Ba- HAp towards aromatics and oxygenates. In the development of a more detailed mechanistic study for the oxidative dehydrogenation noctane, the role of the intermediates such as 1-octene, 2-octene, 3-octene, 4-octene and 1, 7- octadiene was investigated. The influence of hydrocarbon to oxygen ratios was also considered. Ethyl benzene and styrene were produced with high selectivities using 1-octene and 1, 7- octadiene as feeds, whereas o-xylene was the main product when 2-octene, 3-octene and 4- octene were used as feedstocks. / Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2012.

Page generated in 0.0698 seconds