• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perturbando Sistemas Não-Lineares, uma Abordagem do Controle de Caos / Perturbing non-linear systems, an approach to the control of chaos.

Baptista, Murilo da Silva 14 November 1996 (has links)
Inicialmente, consideramos o mapa Logístico com os vários fenômenos nele presentes, para depois, ao perturbarmos esse mapa, adicionando periodicamente um termo de amplitude constante, identificarmos os novos fenômenos e as alterações que a introdução da perturbação faz aparecer. Apresentamos o circuito eletrônico de Matsumoto e, em seguida, o consideramos em um regime caótico perturbado por uma tensão elétrica senoidal externa. A introdução desta perturbação faz o circuito permanecer caótico, tornar-se periódico ou quasi-periódico no toro de duas frequências. Aplicamos diversos métodos de controle de caos a três sistemas (mapa Logístico, mapa de Hénon e circuito de Matsumoto). Para a estabilização de uma órbita periódica, consideramos os métodos de Ott-Grebogi-Yorke (OGY), de Romeiras, de Pyragas, de Sinha, de Singer e de H¨ubbler. Para o direcionamento da trajetória para um ponto de equilíbrio, usamos o método de Sinha. Para a transferência da trajetória para um dos atratores coexistentes no sistema de Matsumoto, usamos o método de Jackson-H¨ubbler (OPCL). Usando um conjunto de pertubações constantes em um parâmetro previamente escolhido, mostramos como é possével dirigir rapidamente uma trajetória, de qualquer um dos três sistemas considerados nesta tese, para um determinado alvo. Além disso, é mostrado como esse método pode ser aplicado experimentalmente. / Initially, we consider the Logistic map with its many non-linear phenomena. Then, we use this knowledge to discern new phenomena that shall appear when the map is perturbed, that is the Logistic map perturbed by a periodic and constant term. The Matsumoto\'s circuit is presented and, after we set this circuit to behave chaotically, we perturb it with a sinoidal wave, characterized by its frequency and amplitude. This perturbation is responsible for the appearence of a quasi-periodic and periodic oscillations, or the maintenance of chaos. We presented and applied many methods for controlling chaotic oscillations in three systems (the Logistic and Henon maps, and the Matsumoto\'s circuit), showing many ways for stabilizing a periodic orbit, using the methods of Ott-Grebogi-York (OGY), Romeiras, Singer, Sinhas and Huebbler. For targeting the trajectory to a equilibrium point, the Sinha\'s method was used. To transfer the system trajectory from one to another of the coexisting attractors presented in the Matsumoto\'s circuit, we use the Jackson-Huebbler (OPCL) method. Using a set of constant perturbations, in a previously chosen parameter, we showed how we can rapidly direct a trajectory of any of the considered three systems to a aimed target. Besides, it is shown how this method can be experimentally applied.
2

Perturbando Sistemas Não-Lineares, uma Abordagem do Controle de Caos / Perturbing non-linear systems, an approach to the control of chaos.

Murilo da Silva Baptista 14 November 1996 (has links)
Inicialmente, consideramos o mapa Logístico com os vários fenômenos nele presentes, para depois, ao perturbarmos esse mapa, adicionando periodicamente um termo de amplitude constante, identificarmos os novos fenômenos e as alterações que a introdução da perturbação faz aparecer. Apresentamos o circuito eletrônico de Matsumoto e, em seguida, o consideramos em um regime caótico perturbado por uma tensão elétrica senoidal externa. A introdução desta perturbação faz o circuito permanecer caótico, tornar-se periódico ou quasi-periódico no toro de duas frequências. Aplicamos diversos métodos de controle de caos a três sistemas (mapa Logístico, mapa de Hénon e circuito de Matsumoto). Para a estabilização de uma órbita periódica, consideramos os métodos de Ott-Grebogi-Yorke (OGY), de Romeiras, de Pyragas, de Sinha, de Singer e de H¨ubbler. Para o direcionamento da trajetória para um ponto de equilíbrio, usamos o método de Sinha. Para a transferência da trajetória para um dos atratores coexistentes no sistema de Matsumoto, usamos o método de Jackson-H¨ubbler (OPCL). Usando um conjunto de pertubações constantes em um parâmetro previamente escolhido, mostramos como é possével dirigir rapidamente uma trajetória, de qualquer um dos três sistemas considerados nesta tese, para um determinado alvo. Além disso, é mostrado como esse método pode ser aplicado experimentalmente. / Initially, we consider the Logistic map with its many non-linear phenomena. Then, we use this knowledge to discern new phenomena that shall appear when the map is perturbed, that is the Logistic map perturbed by a periodic and constant term. The Matsumoto\'s circuit is presented and, after we set this circuit to behave chaotically, we perturb it with a sinoidal wave, characterized by its frequency and amplitude. This perturbation is responsible for the appearence of a quasi-periodic and periodic oscillations, or the maintenance of chaos. We presented and applied many methods for controlling chaotic oscillations in three systems (the Logistic and Henon maps, and the Matsumoto\'s circuit), showing many ways for stabilizing a periodic orbit, using the methods of Ott-Grebogi-York (OGY), Romeiras, Singer, Sinhas and Huebbler. For targeting the trajectory to a equilibrium point, the Sinha\'s method was used. To transfer the system trajectory from one to another of the coexisting attractors presented in the Matsumoto\'s circuit, we use the Jackson-Huebbler (OPCL) method. Using a set of constant perturbations, in a previously chosen parameter, we showed how we can rapidly direct a trajectory of any of the considered three systems to a aimed target. Besides, it is shown how this method can be experimentally applied.

Page generated in 0.0629 seconds