• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 14
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional Role Of Recombinant Cysteine Protease On Spodoptera Frugiperda Peritrophic Matrix

Mohan, Srinidi 09 December 2006 (has links)
Fall armyworm larvae (FAW), which are serious pests in the southern United States, show retarded growth when they feed on insect-resistant maize inbreds Mp704 and Mp708. These maize genotypes are not only resistant to FAW, but to a number of other lepidopteran pests. In these genotypes, a unique, extracellular, 33-KDa cysteine protease (Mir1-CP) rapidly accumulates in the whorl in response to insect feeding. Initial morphological studies on larvae feeding on resistant maize plants over-expressing the cysteine protease showed severe damage in insect?s first line of defense, the peritrophic matrix (PM). But it is not known whether the cysteine protease has unprecedented effect on insect defense mechanisms. This study focuses on understanding the functional involvement of the cysteine protease (Mir1-CP) in a plant-herbivore defense mechanism. I used purified, recombinant 33-KDa cysteine protease (Mir1-CP) and its two mutated forms (Mut1 and Mut2) to determine their effects on the permeability of PMs from fall armyworm and other lepidopteran larvae. The purified Mir1-CP was also used to determine its minimal effective dosage on lepidopteran larval growth as well as to qualitatively determine their direct morphological effects on PM and gut regions of fall armyworm larvae. In vitro permeability studies demonstrated that the recombinant Mir1-CP directly permeabilized the PM and requires both cysteine at the active site and the terminal 25 amino acids to achieve complete permeabilization. Dose response study suggested that physiologically relevant concentrations of Mir1-CP in the maize whorl would be effective in controlling a broad range of lepidopteran pests. The study also suggested that stacking Mir1-CP and Bt-toxin (Bt-CryIIA) genes in transgenic plants could broaden the normal range of both Mir1-CP and Bt-toxin. Morphological studies using three different microscopic techniques showed damaged PM in larvae fed on Mir1-CP diet. These results suggest that by directly permeabilizing and damaging the PM, the Mir1-CP provides critical defense in host plants against lepidopteran pests.
2

The molecular architecture of <i>Mamestra configurata</i> Petitrophic Matrix

Toprak, Umut 22 March 2011
<p>The peritrophic matrix (PM) lines the insect midgut and is composed of chitin and protein. It is required for organization of digestion and for protection of epithelial cells from mechanical damage, pathogens, and toxins. The PM of <i>Mamestra configurata</i> (Lepidoptera: Noctuidae), bertha armyworm, a serious pest of cruciferous oilseed rape, was studied. The multilayered PM is delaminated from the anterior midgut epithelium during molting Phase II by periodic pulses and degraded during the molting Phase I stage. These events are controlled by chitin synthase-B, and chitinolytic enzymes, such as chitinase and β-<i>N</i>-acetylglucosaminidase. Eighty-two PM proteins were identified and classified as: i) peritrophins, ii) enzymes and iii) other proteins. Peritrophins were further classified as simple, binary, complex and repetitive according to their structural organization and phylogenetic analysis of peritrophin A domains. The expression of most genes encoding PM proteins was specific to the midgut and independent of larval feeding status, developmental stage, or PM formation.</p> <p>This study includes the first report of chitin deacetylase (CDA) activity in the insect midgut suggesting that the PM may contain chitosan. Digestive enzymes, such as insect intestinal lipases (IILs) and serine proteases were also associated with the PM. The IIL genes differed in their expression during larval development; however, serine protease genes were expressed continuously and serine protease activity was present in the midgut of feeding and nonfeeding stages. <i>M. configurata</i> IIM4, a complex peritrophin, was susceptible to degradation by Mamestra configurata nucleopolyhedrovirus-A challenge, as the first evidence of IIM degradation by an alphabaculovirus enhancin. <i>M. configurata</i> IIM2, a binary peritrophin, was unaffected by baculoviral challenge and such resistance of an IIM has not been reported previously. The current study is also the first demonstration of silencing by RNA interference (RNAi) of any gene encoding a PM protein, in this case <i>M. configurata</i> CDA1 (McCDA1) and McPM1. In addition, both <i>in vitro</i> and <i>per os</i> feeding experiments revealed <i>McCDA1</i> silencing starting at 24 or 36 hours posttreatment, as one of the most successful demonstrations of RNAi in a lepidopteran.</p>
3

The molecular architecture of <i>Mamestra configurata</i> Petitrophic Matrix

Toprak, Umut 22 March 2011 (has links)
<p>The peritrophic matrix (PM) lines the insect midgut and is composed of chitin and protein. It is required for organization of digestion and for protection of epithelial cells from mechanical damage, pathogens, and toxins. The PM of <i>Mamestra configurata</i> (Lepidoptera: Noctuidae), bertha armyworm, a serious pest of cruciferous oilseed rape, was studied. The multilayered PM is delaminated from the anterior midgut epithelium during molting Phase II by periodic pulses and degraded during the molting Phase I stage. These events are controlled by chitin synthase-B, and chitinolytic enzymes, such as chitinase and β-<i>N</i>-acetylglucosaminidase. Eighty-two PM proteins were identified and classified as: i) peritrophins, ii) enzymes and iii) other proteins. Peritrophins were further classified as simple, binary, complex and repetitive according to their structural organization and phylogenetic analysis of peritrophin A domains. The expression of most genes encoding PM proteins was specific to the midgut and independent of larval feeding status, developmental stage, or PM formation.</p> <p>This study includes the first report of chitin deacetylase (CDA) activity in the insect midgut suggesting that the PM may contain chitosan. Digestive enzymes, such as insect intestinal lipases (IILs) and serine proteases were also associated with the PM. The IIL genes differed in their expression during larval development; however, serine protease genes were expressed continuously and serine protease activity was present in the midgut of feeding and nonfeeding stages. <i>M. configurata</i> IIM4, a complex peritrophin, was susceptible to degradation by Mamestra configurata nucleopolyhedrovirus-A challenge, as the first evidence of IIM degradation by an alphabaculovirus enhancin. <i>M. configurata</i> IIM2, a binary peritrophin, was unaffected by baculoviral challenge and such resistance of an IIM has not been reported previously. The current study is also the first demonstration of silencing by RNA interference (RNAi) of any gene encoding a PM protein, in this case <i>M. configurata</i> CDA1 (McCDA1) and McPM1. In addition, both <i>in vitro</i> and <i>per os</i> feeding experiments revealed <i>McCDA1</i> silencing starting at 24 or 36 hours posttreatment, as one of the most successful demonstrations of RNAi in a lepidopteran.</p>
4

Molecular aspects of sand-fly-based vaccine development

Vieira Coutinho Abreu Gomes, Iliano January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Marcelo Ramalho-Ortigao / The emergence and reemergence of vector-borne diseases pose significant threats to humans and other animals worldwide. Although vector control relies mostly on insecticides, the emergence of insecticide resistance urges for the development of new strategies to control the spread of such diseases. For sand fly-transmitted leishmaniasis, Transmission Blocking Vaccines (TBV) may constitute a feasible strategy to impair Leishmania transmission from infected to uninfected vertebrate hosts. Moreover, sand fly saliva-based vaccines represent an alternative or complementary approach as these vaccines protect different mammalian hosts against Leishmania. Based on the potential use of sand fly molecules as vaccines against leishmaniasis, we assessed the potential of Phlebotomus papatasi midgut secreted proteins as TBV candidates and the expression variability of sand fly salivary gland genes. Regarding the TBV approach, we took advantage of the RNA interference (RNAi) technique to evaluate the effects of knocking down P. papatasi midgut-specific genes on Leishmania major development within the sand fly midgut. Whereas peritrophin 1 (PpPer1) knock down led to increased Le. major load by 39%, knocking down chitinase 1 (PpChit1) reduced Le. major load in P. papatasi midguts by 63%. Thus, our data strongly suggest that PpChit1 constitutes a potential target for TBV approaches against Leishmania transmission in endemic areas. Concerning protective vaccines based on salivary gland secreted proteins, we searched for expression polymorphism in selected salivary gland genes in natural and colonized populations of P. papatasi. Significant differences in salivary gland gene expression were not only exhibited in P. papatasi specimens collected in different geographic habitats but also seasonal difference in gene expression was displayed by specimens belonging to the same population. As antigen dose is an important component of immune responses, different doses of salivary protein inoculated into host skin may interfere with vaccine protection. Thus, the efficacy of sand fly saliva-based vaccine upon exposure to different salivary protein doses must be evaluated before deployment in endemic areas. Our data also ruled out some biotic factors as responsible for fine-tuning the expression of such genes. Overall, this dissertation makes significant contribution to the development of sand fly-based vaccines against leishmaniasis.
5

Síntese, degradação e funções da membrana peritrófica dos insetos / Synthesis, degradation and functions of insect peritrophic membrane

Bolognesi, Renata 05 April 2005 (has links)
A maior parte dos insetos possui uma estrutura anatômica em forma de filme (membrana peritrófica, MP) composta de quitina e proteínas (peritrofinas), que separa o alimento do epitélio do intestino médio. A MP protege o epitélio de microorganismos e da abrasão, e possui outras funções baseadas no fato de que a MP promove a compartimentalização de enzimas, que incluem: aumento da eficiência digestiva através da diminuição da taxa de excreção das enzimas e de outros mecanismos postulados que são testados nesta tese. A síntese das peritrofinas é mais conhecida do que a da quitina componente da MP, tornando desejável um esforço no detalhamento dessa última. Foram realizadas a caracterização e expressão de genes de S. frugiperda que codificam uma peritrofina e enzimas responsáveis pela síntese e degradação de quitina (quitina sintases 1 (SfCHS1) e 2 (SfCHS2), e quitinase (SfCHI), respectivamente). As sequências dos cDNAs correspondentes foram determinadas através da amplificação de fragmentos de PCR que se sobrepõem. Os padrões de expressão dos genes envolvidos no metabolismo da quitina da MP foram analisados durante o desenvolvimento do inseto por RT-PCR. SfCHS2 é expresso no intestino médio durante os estágios de alimentação da larva, enquanto que SfCHI é expresso durante as fases de pós-alimentação, pré-pupa, e pupa. Ambos os genes são predominantemente expressos na região anterior no intestino médio com um gradiente decrescente de expressão ao longo do tubo digestivo. A citolocalização da quitina revelou que o polissacarídeo está presente somente quando SfCHS2 é expresso e não há quitina no intestino médio quando SfCHI é expresso. Esses resultados levaram a formulação da hipótese de que SfCHS2 é responsável pela síntese da quitina da MP durante o estágio larval e SfCHI degrada a quitina da MP durante a muda larva-pupa, sugerindo padrões inversos de expressão desses genes. Em Spodoptera frugiperda, Tenebrio molitor e Musca domestica é possível prever o sítio de secreção das enzimas digestivas (ventrículo anterior, médio ou posterior) a partir da distribuição antero-posterior das enzimas no espaço endoperitrófico. Também foi possível mostrar, usando vários modelos experimentais, que a separação de compartimentos luminais pela MP: a) impede a inibição de despolimerazes por remover oligômeros do espaço endoperitrófico; b) evita a inibição de oligômero hidrolases restringindo-as ao espaço ectoperitrófico e impedindo que entrem em contato com o alimento e c) anula a inibição de enzimas envolvidas na digestão terminal presentes na superfície do epitélio, impedindo que o alimento entre em contato com elas. / Most insects have a film-like anatomical structure (peritrophic membrane, PM) composed of chitin and proteins (peritrophins), which separates food from midgut tissue. It protects the epithelium against food abrasion and microrganisms and has other functions based on compartmentalization of enzymes, which include: increasing digestive efficiency by decreasing enzyme excretion and by other mechanisms that were tested in this thesis. The peritrophin synthesis is less known than PM chitin synthesis, which needs to be better understood. The characterization and expression of S. frugiperda genes encoding a peritrophin and enzymes responsible for the synthesis and degradation of chitin, chitin synthases 1(SfCHS1) and 2 (SfCHS2), and chitinase (SfCHI), respectively, were analysed. Sequences of corresponding cDNAs were determined by amplification of overlapping PCR fragments and the expression patterns of chitin metabolism genes were analyzed during insect development by RT-PCR. SfCHS2 is expressed in the midgut during the feeding stages, whereas SfCHI is expressed during the wandering and pupal stages. Both genes are predominantly expressed in the anterior portion of the midgut with a decreasing gradient of transcript levels in the medial and posterior portions. Chitin staining revealed that the polysaccharide is present in the PM only when SfCHS2 is expressed. There is little or no chitin in the midgut when SfCHI is expressed. These results support the hypothesis that SfCHS2 is responsible for PM chitin synthesis during the larval stage and SfCHI for PM chitin degradation during larval-pupal molting, suggesting inverse patterns of expression of these genes. The secretion site (anterior, middle or posterior midgut) of digestive enzymes can be predicted in Spodoptera frugiperda, Tenebrio molitor and Musca domestica based on enzyme activity distribution along the endoperitrophic space. We also have shown, using several experimental models, that the luminal compartment separation by PM: a) avoid the polimer hidrolases inhibition by removing oligomer from endoperitrophic space; b) decrease the oligomer hidrolases inhibition by restricting them to the ectoperitrophic space (by avoiding their contact with food); and c) block the inhibition of enzymes located at the cell surface involved in terminal digestion by avoiding their contact with food.
6

A membrana peritrófica de Spodoptera frugiperda: secreção de peritrofinas e papel na imobilização e na reciclagem de enzimas digestivas / The peritrophic membrane of Spodoptera frugiperda secretion of peritrofinas and role in the immobilization and recycling of digestive enzymes

Bolognesi, Renata 08 March 2001 (has links)
Os insetos possuem uma película que reveste o intestino médio (membrana peritrófica, MP), que é composta por quitina e proteínas (peritrofinas). Além de possuir as funções de proteção contra abrasão causada pela comida e contra microrganismos, a MP possui algumas funções específicas que dependem do fato de que essa estrutura compartimentaliza o lúmen do intestino médio em duas regiões denominadas espaço endoperitrófico e espaço ectoperitrófico. As funções específicas da MP são baseadas em evidências indiretas e incluem o impedimento da ligação não específica de comida na superfície celular, o decréscimo na excreção das enzimas digestivas através da sua reciclagem e, em insetos mais evoluídos, o impedimento de oligômero- e dímero-hidrolases de penetrarem no espaço endoperitrófico. As proteínas da membrana microvilar intestinal e uma peritrofina (proteína da membrana peritrófica) de Spodoptera frugiperda foram isoladas e utilizadas para a produção de anticorpos em coelho. Esses anticorpos, juntamente com um anticorpo anti-amilase de Tenebrio molitor (que reconhece as amilases de S. frugiperda), foram utilizados em estudos de imunocitolocalização realizados com a ajuda de anticorpos secundários acoplados a uma proteína fluorescente ou a partículas de ouro coloidal. Os resultados mostraram que a peritrofina de S. frugiperda é secretada pelas células colunares da região anterior do intestino médio através de vesículas que se destacam das microvilosidades (secreção microapócrina). As vesículas com dupla membrana (uma da própria vesícula e a outra da microvilosidade) tornam-se vesículas com membrana simples através da fusão entre membranas e, nesse processo, a peritrofina e parte da amilase e tripsina são liberadas. As membranas remanescentes das vesículas, ainda contendo proteínas microvilares, amilase e tripsina ligadas, são incorporadas a um material com consistência de gel que forma parte da MP. Larvas alimentadas com calcoflúor tiveram a sua MP desestruturada e, em razão disso, perderam o gradiente decrescente antero-posterior de tripsina e quimotripsina observado ao longo do intestino médio das larvas controle. Esse gradiente é presumivelmente formado por um contrafluxo de fluidos (no espaço entre a MP e o epitélio) que permite a reciclagem de enzimas. / Insects have a film-like anatomical structure (peritrophic membrane, PM) which lines the midgut. It is composed of chitin and proteins (peritrophins). Besides the functions of protection against food abrasion and microrganisms, PM has specific functions that depend on the fact that this structure compartimentalizes the midgut lumen into an endoperitrophic and an ectoperitrophic space. Knowledge on these specific functions are based only in indirect evidence and include: prevention of non-specific food binding onto cell surface; prevention of enzyme excretion by allowing enzyme recycling and restriction of oligomer hydrolases to ectoperitrophic space. A peritrophin from Spodoptera frugiperda PM, as well as microvillar proteins from S. frugiperda anterior midgut, were isolated and used to raise antibodies in a rabbit. These antibodies, a Tenebrio molitor anti-amylase antibody that cross-reacts with S. frugiperda amylases, and wheat-germ aglutinin were used in immunolocalization experiments performed with the aid of confocal fluorescence and immunogold techniques. The results showed that the peritrophin is secreted by anterior midgut columnar cells in vesicles that pinched-off the microvilli (microapocrine secretion). The resulting double membrane vesicles become single membrane vesicles by membrane fusion, releasing peritrophin and part of the amylase and trypsin. The remaining vesicle membranes (still containing microvillar proteins and membrane-bound amylase and trypsin) are incorpored into a jelly-like material associated with PM. Calcofluor-treated larvae lacking a PM were shown to lose the trypsin and chymotrypsin decreasing gradient observed along the midgut of control larvae. This gradient is thought to be formed by a countercurrent flux of fluid (in the space between PM and midgut cells) that powers enzyme recycling.
7

Síntese, degradação e funções da membrana peritrófica dos insetos / Synthesis, degradation and functions of insect peritrophic membrane

Renata Bolognesi 05 April 2005 (has links)
A maior parte dos insetos possui uma estrutura anatômica em forma de filme (membrana peritrófica, MP) composta de quitina e proteínas (peritrofinas), que separa o alimento do epitélio do intestino médio. A MP protege o epitélio de microorganismos e da abrasão, e possui outras funções baseadas no fato de que a MP promove a compartimentalização de enzimas, que incluem: aumento da eficiência digestiva através da diminuição da taxa de excreção das enzimas e de outros mecanismos postulados que são testados nesta tese. A síntese das peritrofinas é mais conhecida do que a da quitina componente da MP, tornando desejável um esforço no detalhamento dessa última. Foram realizadas a caracterização e expressão de genes de S. frugiperda que codificam uma peritrofina e enzimas responsáveis pela síntese e degradação de quitina (quitina sintases 1 (SfCHS1) e 2 (SfCHS2), e quitinase (SfCHI), respectivamente). As sequências dos cDNAs correspondentes foram determinadas através da amplificação de fragmentos de PCR que se sobrepõem. Os padrões de expressão dos genes envolvidos no metabolismo da quitina da MP foram analisados durante o desenvolvimento do inseto por RT-PCR. SfCHS2 é expresso no intestino médio durante os estágios de alimentação da larva, enquanto que SfCHI é expresso durante as fases de pós-alimentação, pré-pupa, e pupa. Ambos os genes são predominantemente expressos na região anterior no intestino médio com um gradiente decrescente de expressão ao longo do tubo digestivo. A citolocalização da quitina revelou que o polissacarídeo está presente somente quando SfCHS2 é expresso e não há quitina no intestino médio quando SfCHI é expresso. Esses resultados levaram a formulação da hipótese de que SfCHS2 é responsável pela síntese da quitina da MP durante o estágio larval e SfCHI degrada a quitina da MP durante a muda larva-pupa, sugerindo padrões inversos de expressão desses genes. Em Spodoptera frugiperda, Tenebrio molitor e Musca domestica é possível prever o sítio de secreção das enzimas digestivas (ventrículo anterior, médio ou posterior) a partir da distribuição antero-posterior das enzimas no espaço endoperitrófico. Também foi possível mostrar, usando vários modelos experimentais, que a separação de compartimentos luminais pela MP: a) impede a inibição de despolimerazes por remover oligômeros do espaço endoperitrófico; b) evita a inibição de oligômero hidrolases restringindo-as ao espaço ectoperitrófico e impedindo que entrem em contato com o alimento e c) anula a inibição de enzimas envolvidas na digestão terminal presentes na superfície do epitélio, impedindo que o alimento entre em contato com elas. / Most insects have a film-like anatomical structure (peritrophic membrane, PM) composed of chitin and proteins (peritrophins), which separates food from midgut tissue. It protects the epithelium against food abrasion and microrganisms and has other functions based on compartmentalization of enzymes, which include: increasing digestive efficiency by decreasing enzyme excretion and by other mechanisms that were tested in this thesis. The peritrophin synthesis is less known than PM chitin synthesis, which needs to be better understood. The characterization and expression of S. frugiperda genes encoding a peritrophin and enzymes responsible for the synthesis and degradation of chitin, chitin synthases 1(SfCHS1) and 2 (SfCHS2), and chitinase (SfCHI), respectively, were analysed. Sequences of corresponding cDNAs were determined by amplification of overlapping PCR fragments and the expression patterns of chitin metabolism genes were analyzed during insect development by RT-PCR. SfCHS2 is expressed in the midgut during the feeding stages, whereas SfCHI is expressed during the wandering and pupal stages. Both genes are predominantly expressed in the anterior portion of the midgut with a decreasing gradient of transcript levels in the medial and posterior portions. Chitin staining revealed that the polysaccharide is present in the PM only when SfCHS2 is expressed. There is little or no chitin in the midgut when SfCHI is expressed. These results support the hypothesis that SfCHS2 is responsible for PM chitin synthesis during the larval stage and SfCHI for PM chitin degradation during larval-pupal molting, suggesting inverse patterns of expression of these genes. The secretion site (anterior, middle or posterior midgut) of digestive enzymes can be predicted in Spodoptera frugiperda, Tenebrio molitor and Musca domestica based on enzyme activity distribution along the endoperitrophic space. We also have shown, using several experimental models, that the luminal compartment separation by PM: a) avoid the polimer hidrolases inhibition by removing oligomer from endoperitrophic space; b) decrease the oligomer hidrolases inhibition by restricting them to the ectoperitrophic space (by avoiding their contact with food); and c) block the inhibition of enzymes located at the cell surface involved in terminal digestion by avoiding their contact with food.
8

Functional role of recombinant cysteine protease on Spodoptera frugiperda peritrophic matrix

Mohan, Srinidi, January 2006 (has links)
Thesis (Ph.D.) -- Mississippi State University. Department of Biochemistry and Molecular Biology. / Title from title screen. Includes bibliographical references.
9

Srovnání peritrofické matrix u čtyř druhů flebotomů (Diptera: Psychodidae) a její role ve vývoji leishmanií (Kinetoplastida: Trypanosomatidae). / A comparison of the peritrophic matrix in four sand fly species (Diptera: Psychodidae) and its role in the Leishmania development (Kinetoplastida: Trypanosomatidae).

Homola, Miroslav January 2017 (has links)
anglický Phlebotomine sand flies (Diptera: Psychodidae) are the only proven vectors of Leishmania parasites (Kinetoplastida: Trypanosomatidae). In Nematoceran Diptera, including sand flies, adults produce a type 1 peritrophic matrix (PM) which is secreted in response to the distension of the midgut caused by blood meal. The PM is an acellular envelope composed of chitin fibres and proteins, which protects the midgut epithelium against abrasion and pathogens and improves digestion. In hematophagous insects, the PM also plays a central role in heme detoxification. Female sand flies acquire Leishmania with a bloodmeal and the parasites undergo complicated development in their gut finished by the colonization of the stomodeal valve. The PM is one of the most important barriers in Leishmania development and its role in the vector competence of the S. schwetzi is the main topic of this master thesis. The PM's kinetic and morfology in the S. schwetzi is compared with other three sand fly species which differ in susceptibility to L. donovani. The key role of the PM in S. schwetzi vector competence is finally proved by disrupting the PM using the exogenous chitinase from Beauveria bassiana. Under these artificial conditions, the Leishmania parasites (L. donovani and L. major) are able to exit the PM,...
10

A membrana peritrófica de Spodoptera frugiperda: secreção de peritrofinas e papel na imobilização e na reciclagem de enzimas digestivas / The peritrophic membrane of Spodoptera frugiperda secretion of peritrofinas and role in the immobilization and recycling of digestive enzymes

Renata Bolognesi 08 March 2001 (has links)
Os insetos possuem uma película que reveste o intestino médio (membrana peritrófica, MP), que é composta por quitina e proteínas (peritrofinas). Além de possuir as funções de proteção contra abrasão causada pela comida e contra microrganismos, a MP possui algumas funções específicas que dependem do fato de que essa estrutura compartimentaliza o lúmen do intestino médio em duas regiões denominadas espaço endoperitrófico e espaço ectoperitrófico. As funções específicas da MP são baseadas em evidências indiretas e incluem o impedimento da ligação não específica de comida na superfície celular, o decréscimo na excreção das enzimas digestivas através da sua reciclagem e, em insetos mais evoluídos, o impedimento de oligômero- e dímero-hidrolases de penetrarem no espaço endoperitrófico. As proteínas da membrana microvilar intestinal e uma peritrofina (proteína da membrana peritrófica) de Spodoptera frugiperda foram isoladas e utilizadas para a produção de anticorpos em coelho. Esses anticorpos, juntamente com um anticorpo anti-amilase de Tenebrio molitor (que reconhece as amilases de S. frugiperda), foram utilizados em estudos de imunocitolocalização realizados com a ajuda de anticorpos secundários acoplados a uma proteína fluorescente ou a partículas de ouro coloidal. Os resultados mostraram que a peritrofina de S. frugiperda é secretada pelas células colunares da região anterior do intestino médio através de vesículas que se destacam das microvilosidades (secreção microapócrina). As vesículas com dupla membrana (uma da própria vesícula e a outra da microvilosidade) tornam-se vesículas com membrana simples através da fusão entre membranas e, nesse processo, a peritrofina e parte da amilase e tripsina são liberadas. As membranas remanescentes das vesículas, ainda contendo proteínas microvilares, amilase e tripsina ligadas, são incorporadas a um material com consistência de gel que forma parte da MP. Larvas alimentadas com calcoflúor tiveram a sua MP desestruturada e, em razão disso, perderam o gradiente decrescente antero-posterior de tripsina e quimotripsina observado ao longo do intestino médio das larvas controle. Esse gradiente é presumivelmente formado por um contrafluxo de fluidos (no espaço entre a MP e o epitélio) que permite a reciclagem de enzimas. / Insects have a film-like anatomical structure (peritrophic membrane, PM) which lines the midgut. It is composed of chitin and proteins (peritrophins). Besides the functions of protection against food abrasion and microrganisms, PM has specific functions that depend on the fact that this structure compartimentalizes the midgut lumen into an endoperitrophic and an ectoperitrophic space. Knowledge on these specific functions are based only in indirect evidence and include: prevention of non-specific food binding onto cell surface; prevention of enzyme excretion by allowing enzyme recycling and restriction of oligomer hydrolases to ectoperitrophic space. A peritrophin from Spodoptera frugiperda PM, as well as microvillar proteins from S. frugiperda anterior midgut, were isolated and used to raise antibodies in a rabbit. These antibodies, a Tenebrio molitor anti-amylase antibody that cross-reacts with S. frugiperda amylases, and wheat-germ aglutinin were used in immunolocalization experiments performed with the aid of confocal fluorescence and immunogold techniques. The results showed that the peritrophin is secreted by anterior midgut columnar cells in vesicles that pinched-off the microvilli (microapocrine secretion). The resulting double membrane vesicles become single membrane vesicles by membrane fusion, releasing peritrophin and part of the amylase and trypsin. The remaining vesicle membranes (still containing microvillar proteins and membrane-bound amylase and trypsin) are incorpored into a jelly-like material associated with PM. Calcofluor-treated larvae lacking a PM were shown to lose the trypsin and chymotrypsin decreasing gradient observed along the midgut of control larvae. This gradient is thought to be formed by a countercurrent flux of fluid (in the space between PM and midgut cells) that powers enzyme recycling.

Page generated in 0.0904 seconds