• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 732
  • 339
  • 175
  • 132
  • 31
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • 14
  • 10
  • 9
  • 9
  • Tagged with
  • 1768
  • 297
  • 216
  • 172
  • 148
  • 144
  • 125
  • 114
  • 102
  • 93
  • 93
  • 93
  • 91
  • 87
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Dermal and ocular exposure during the spray application of selected industrial chemicals

Lee, Su G. January 2005 (has links)
"November 2004" / Bibliography: leaves 149-179. / xxviii, 218 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / "This study addresses exposure during spraying of malathion and fenthion insecticides for fruit fly control and hexamethylene di-isocyanate (HDI)-based paint in the automotive and furniture industries. The research aims to characterize exposures and symptoms, and assess the adequacy of personal protective equipment under field conditions." --p. iii. / Thesis (Ph.D.)--University of Adelaide, Faculty of Health Sciences, Dept. of Public Health, 2005
332

Effect of manufacturing conditions and polymer ratio on the permeability and film morphology of ethyl cellulose and hydroxypropyl cellulose free-films produced by using a novel spray method.

Jarke, Annica January 2009 (has links)
<p>This thesis considers the effect of manufacturing conditions and polymer ratio on water permeability and morphology of free-films. A novel spray method for producing ethyl cellulose (EC) and hydroxypropyl cellulose (HPC) free-films was developed where several process parameters was controlled. The process was optimised by pre-spraying solvent until the system reached a steady-state temperature. This minimised the variation of outlet air temperature to < 2.5 °C. Coating time was approximately 4 minutes excluding drying.</p><p>Free-films were produced using 94 wt% solvent (95 %-ethanol) and 6 wt% polymer. The amount of HPC in the films was varied (wt% HPC defined as HPC/(HPC+EC)*100). Films with 30-40-50-57 wt% HPC were studied. Phase diagrams was constructed to study the phase transformation of polymer mixtures. Results show that all polymer mixtures with HPC content above 30 wt% were phase separated prior to film manufacturing. Temperature had an effect on the polymer phase transformation. In the phase diagram, the 2-phase area was larger for temperatures above 40 °C.</p><p>The investigated manufacturing conditions were outlet air temperature (°C) and spray rate (g/min). Outlet air temperature was controlled by adjusting the inlet air temperature. The films were characterized by measuring water permeability (m<sup>2</sup>/s). Cross section structure of the films was analyzed with confocal laser scanning microscopy (CLSM). FITC-HPC was added for enhanced contrast between the domains.</p><p>Higher outlet air temperature gave higher water permeability of the film whereas higher spray rate gave lower water permeability. The outlet air temperature had an impact on evaporation rate. The evaporation rate together with spray rate affected the solidification and hence the structure of the film. Images show that longer solidification time smeared the domains into larger domains. Lower water permeability was caused by less connectivity between the pores.</p><p>In conclusion, experiments show that water permeability of EC/HPC free-films was highly dependent on the manufacturing conditions.</p><p><sup> </sup></p>
333

Nitrate and pesticide transport under pear production in clay and sandy soil

Cao, Weidong 06 December 1994 (has links)
Groundwater contamination on irrigated land is of concern in this nation and around the world. In order to reduce the potential of groundwater contamination by agricultural practices such as irrigation, fertilizer and pesticide application, vadose-zone monitoring and sampling are needed. The main objective of this study was to evaluate impacts of current irrigation treatments and soil structures on the migration of pollutants to groundwater. Passive CAPillary wick pan Samplers (PCAPS) and suction cups were installed in two cracking clays and one sandy soil under the pear tree root zone. PCAPS and suction cups were used to collect nitrate-nitrogen and tracer samples. Tracers were applied to track the spatial and temporal patterns of compounds that mimic nitrate-nitrogen and pesticide movement. The observed magnitude of water leaching over 3 months differed between irrigation methods and soil structures and decreased in this order: flooding over 3 months in clay soil (22.8 cm) > micro-sprinkler in clay soil (16.1 cm) > over-head sprinkler in sandy soil (4.1 cm). Leaching patterns were varied spatially; soil structures, irrigation methods, preferential flow, and high water table may have been responsible for the spatial variation of leaching. Mass recovery of all three tracers, including bromide, blue dye, and rhodamine had the same decreasing order: flooding in clay soil > micro-sprinkler in clay soil > over-head sprinkler in sandy soil. Average blue dye and rhodamine concentrations had the following order: flooding in clay soil > micro-sprinkler in clay > over-head sprinkler in sandy soil. Since blue dye and rhodamine have similar properties to some moderately adsorbed pesticides, we may infer that the risk of pesticide movement in three sites should also decrease in this order. Presumably pesticide movement in clay soil would have been more pronounced for flooding than sprinkler irrigation. On the annual/seasonal basis, the total mass of nitrate-nitrogen leaching differed between irrigation methods and soil structures and decreased in the following order: over-head sprinkler in sandy soil > flooding in clay soil > micro-sprinkler in clay soil. The annual average nitrate-nitrogen concentration observed under over-head sprinkler in sandy soil was 15 mg/l over the maximum allowed concentration level (10 mg/l) by the EPA while seasonal nitrate-nitrogen concentration was low in clay soil under current irrigation practices. Strong evidence suggested the occurrence of preferential flow in this study. Preferential flow may contribute to high water leachate, nitrate and pesticide migration. High correlation coefficients between paired PCAPS indicated that PCAPS have similar responses to water and solute leaching. Several improvements in PCAPS are needed to obtain representative samples under severe flooding conditions. Limited data suggested that ultra-low rate irrigation devices could reduce the water leaching and the potential of pollutant migration to the groundwater because ultra-low rate application devices minimize the soil macropore flow. / Graduation date: 1995
334

Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies

January 1946 (has links)
Charles Kittel. / "May 20, 1948." / Army Signal Corps Contract No. W-36-039 sc-32037. Contract OEMsr-262.
335

Permeability estimation of fracture networks

Jafari, Alireza 06 1900 (has links)
This dissertation aims to propose a new and practical method to obtain equivalent fracture network permeability (EFNP), which represents and replaces all the existing fractures located in each grid block for the reservoir simulation of naturally fractured reservoirs. To achieve this, first the relationship between different geometrical properties of fracture networks and their EFNP was studied. A MATLAB program was written to generate many different realizations of 2-D fracture networks by changing fracture length, density and also orientation. Next, twelve different 2-D fractal-statistical properties of the generated fracture networks were measured to quantify different characteristics. In addition to the 2-D fractal-statistical properties, readily available 1-D and 3-D data were also measured for the models showing variations of fracture properties in the Z-direction. The actual EFNP of each fracture network was then measured using commercial software called FRACA. The relationship between the 1-, 2- and 3-D data and EFNP was analyzed using multivariable regression analysis and based on these analyses, correlations with different number of variables were proposed to estimate EFNP. To improve the accuracy of the predicted EFNP values, an artificial neural network with the back-propagation algorithm was also developed. Then, using the experimental design technique, the impact of each fracture network parameter including fracture length, density, orientation and conductivity on EFNP was investigated. On the basis of the results and the analyses, the conditions to obtain EFNP for practical applications based on the available data (1-D well, 2-D outcrop, and 3-D welltest) were presented. This methodology was repeated for natural fracture patterns obtained mostly from the outcrops of different geothermal reservoirs. The validity of the equations was also tested against the real welltest data obtained from the fields. Finally, the concept of the percolation theory was used to determine whether each fracture network in the domain is percolating (permeable) and to quantify the fracture connectivity, which controls the EFNP. For each randomly generated fracture network, the relationship between the combined fractal-percolation properties and the EFNP values was investigated and correlations for predicting the EFNP were proposed. As before, the results were validated with a new set of fracture networks. / Petroleum Engineering
336

The role of small intestinal permeability in the pathogenesis of colitis in the interleukin-10 gene deficient mouse

Arrieta Mendez, Marie Claire 06 1900 (has links)
It is currently believed that the etiology of inflammatory bowel disease involves an aberrant immune response towards the gastrointestinal microbial flora. In addition, an increase in intestinal paracellular permeability may also be a contributing factor of disease, as it precedes disease in several animal models. However, it remains unclear whether increased intestinal permeability is an epiphenomenon of disease or if it can lead to it. The goal of this thesis is to elucidate this cause-effect relationship. The IL-10-/- mouse is a model of IBD that spontaneously develops colitis after 12 weeks of age. We measured intestinal permeability in this mouse from 4-17 weeks of age and observed that there was a significant increase in small intestinal permeability early in life and before the onset of colitis. When small intestinal permeability was selectively decreased with AT-1001 (a ZOT antagonist peptide) colitis was significantly ameliorated. In contrast, when it was increased with AT-1002 (a ZOT agonist peptide) colitis worsened, indicating that modifications in the paracellular traffic of the small intestine had a significant effect on the severity of colonic disease. In order to study the possible mechanisms by which small intestinal permeability modulated disease in the colon, we measured the effect of increasing small intestinal permeability on the colonic microbial flora of IL-10-/- mice. After AT-1002 treatment from 4-12 weeks of age, there was an evident shift in colonic adherent flora. This effect was not a consequence of inflammation as there was a similar effect in wild type mice. We also studied the effect of increasing small intestinal permeability in the development of oral tolerance to dietary antigens. When wild-type mice were fed OVA under conditions of increased small intestinal permeability there was a significant increase in the proliferation of B cells in the spleen and an increase in OVA-specific humoral response, compared to animals fed OVA alone. Moreover, the production of IL-10 in response to oral OVA was prevented when OVA was given with AT-1002, both in the small intestine and the colon. The studies presented in the doctoral thesis suggest that small intestinal permeability has a critical role in the development of colitis in IL-10-/-mice, and that increasing paracellular traffic in the small intestine may lead to changes in colonic bacterial flora and the abrogation of tolerance to oral antigens, two features of inflammatory bowel disease in humans. / Experimental Medicine
337

Proton conducting polymer composite membrane development for Direct Methanol Fuel Cell applications.

Luo, Hongze. January 2008 (has links)
<p> <meta content="text/html / charset=utf-8" http-equiv="Content-Type" /> <meta content="Word.Document" name="ProgId" /> <meta content="Microsoft Word 12" name="Generator" /> <meta content="Microsoft Word 12" name="Originator" /> <link href="file:///C:DOCUME~1staffLOCALS~1Tempmsohtmlclip11clip_filelist.xml" rel="File-List" /> <link href="file:///C:DOCUME~1staffLOCALS~1Tempmsohtmlclip11clip_themedata.thmx" rel="themeData" /> <link href="file:///C:DOCUME~1staffLOCALS~1Tempmsohtmlclip11clip_colorschememapping.xml" rel="colorSchemeMapping" /><!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves /> <w:TrackFormatting /> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF /> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:SplitPgBreakAndParaMark /> <w:DontVertAlignCellWithSp /> <w:DontBreakConstrainedForcedTables /> <w:DontVertAlignInTxbx /> <w:Word11KerningPairs /> <w:CachedColBalance /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> <m:mathPr> <m:mathFont m:val="Cambria Math" /> <m:brkBin m:val="before" /> <m:brkBinSub m:val="&#45 / -" /> <m:smallFrac m:val="off" /> <m:dispDef /> <m:lMargin m:val="0" /> <m:rMargin m:val="0" /> <m:defJc m:val="centerGroup" /> <m:wrapIndent m:val="1440" /> <m:intLim m:val="subSup" /> <m:naryLim m:val="undOvr" /> </m:mathPr></w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal" /> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8" /> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9" /> <w:LsdException Locked="false" Priority="39" Name="toc 1" /> <w:LsdException Locked="false" Priority="39" Name="toc 2" /> <w:LsdException Locked="false" Priority="39" Name="toc 3" /> <w:LsdException Locked="false" Priority="39" Name="toc 4" /> <w:LsdException Locked="false" Priority="39" Name="toc 5" /> <w:LsdException Locked="false" Priority="39" Name="toc 6" /> <w:LsdException Locked="false" Priority="39" Name="toc 7" /> <w:LsdException Locked="false" Priority="39" Name="toc 8" /> <w:LsdException Locked="false" Priority="39" Name="toc 9" /> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption" /> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title" /> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font" /> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle" /> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong" /> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis" /> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid" /> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text" /> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1" /> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision" /> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph" /> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote" /> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5" /> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6" /> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6" /> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6" /> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6" /> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6" /> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6" /> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6" /> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6" /> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6" /> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6" /> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6" /> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6" /> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6" /> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6" /> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis" /> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis" /> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference" /> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference" /> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title" /> <w:LsdException Locked="false" Priority="37" Name="Bibliography" /> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading" /> </w:LatentStyles> </xml><![endif]--><style type="text/css"> <!-- /* Font Definitions */ @font-face {font-family:"Cambria Math" / panose-1:2 4 5 3 5 4 6 3 2 4 / mso-font-charset:0 / mso-generic-font-family:roman / mso-font-pitch:variable / mso-font-signature:-1610611985 1107304683 0 0 159 0 / } @font-face {font-family:Calibri / panose-1:2 15 5 2 2 2 4 3 2 4 / mso-font-charset:0 / mso-generic-font-family:swiss / mso-font-pitch:variable / mso-font-signature:-1610611985 1073750139 0 0 159 0 / } /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no / mso-style-qformat:yes / mso-style-parent:"" / margin-top:0in / margin-right:0in / margin-bottom:10.0pt / margin-left:0in / line-height:115% / mso-pagination:widow-orphan / font-size:11.0pt / font-family:"Calibri","sans-serif" / mso-ascii-font-family:Calibri / mso-ascii-theme-font:minor-latin / mso-fareast-font-family:"Times New Roman" / mso-hansi-font-family:Calibri / mso-hansi-theme-font:minor-latin / mso-bidi-font-family:"Times New Roman" / mso-bidi-theme-font:minor-bidi / } .MsoChpDefault {mso-style-type:export-only / mso-default-props:yes / font-family:Times-Bold / mso-ascii-font-family:Calibri / mso-ascii-theme-font:minor-latin / mso-hansi-font-family:Calibri / mso-hansi-theme-font:minor-latin / mso-bidi-font-family:Calibri / mso-bidi-theme-font:minor-latin / } .MsoPapDefault {mso-style-type:export-only / margin-bottom:10.0pt / line-height:115% / } @page Section1 {size:8.5in 11.0in / margin:1.0in 1.0in 1.0in 1.0in / mso-header-margin:.5in / mso-footer-margin:.5in / mso-paper-source:0 / } div.Section1 {page:Section1 / } --> </style><!--[if gte mso 10]> <style> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal" / mso-tstyle-rowband-size:0 / mso-tstyle-colband-size:0 / mso-style-noshow:yes / mso-style-priority:99 / mso-style-qformat:yes / mso-style-parent:"" / mso-padding-alt:0in 5.4pt 0in 5.4pt / mso-para-margin-top:0in / mso-para-margin-right:0in / mso-para-margin-bottom:10.0pt / mso-para-margin-left:0in / line-height:115% / mso-pagination:widow-orphan / font-size:11.0pt / font-family:"Calibri","sans-serif" / mso-ascii-font-family:Calibri / mso-ascii-theme-font:minor-latin / mso-fareast-font-family:"Times New Roman" / mso-fareast-theme-font:minor-fareast / mso-hansi-font-family:Calibri / mso-hansi-theme-font:minor-latin / mso-bidi-font-family:"Times New Roman" / mso-bidi-theme-font:minor-bidi / } </style> <![endif]--><span style="font-size: 12pt / font-family: &quot / Times New Roman&quot / ,&quot / serif&quot / ">The objective of this study was thus to prepare highly proton condictivity membranes that are cheap to manufacture and have low methanol permeability. &nbsp / &nbsp / </span></p>
338

Potential Applications of Silk Fibroin as a Biomaterial

Bailey, Kevin 07 June 2013 (has links)
Fibroin is a biopolymer obtained from the cocoons of the Bombyx mori silkworm that offers many unique advantages. In this thesis work, fibroin was processed into a regenerated film and examined for potential biomaterial applications. The adsorption of bovine serum albumin onto the fibroin film was investigated to examine the biocompatibility of the film, and it was found that BSA adsorption capacity increased with an increase in BSA concentration. At 10 mg/mL of BSA, the BSA sorption reached 0.045 mg/cm2. This level of BSA is indicative of good blood compatibility and biocompatibility of the fibroin. The gas permeabilities of oxygen, nitrogen, and carbon dioxide were tested for potential applications in contact lenses and wound dressings. Over a pressure range of 70 – 350 psig, the permeability of oxygen and nitrogen was 5 Barrer, while that of carbon dioxide ranged from 26 to 37 Barrer. The oxygen transmissibility of the fibroin films prepared in this study was on the low end required for use in daily wear contact lenses, but sufficient to aid the healing process for use in wound dressings. The permeability and diffusivity of four model drugs in the fibroin film was investigated for potential applications in controlled drug release. The permeability at higher source concentrations leveled out to 0.8 – 4.3 x 10-7 cm2/s depending on the drug tested. The diffusion coefficient determined from sorption experiments was approximately 1.8 x 10-9 cm2/s, while the diffusion coefficients from desorption experiments were determined to be 0.8 – 2.7 x 10-9 cm2/s. The magnitude of the drug permeability and diffusivity are consistent with many other controlled release materials, and the fibroin film showed good potential for use in controlled release.
339

Urinary excretion of histamine and methylhistamine after burns

Johansson, Joakim, Bäckryd, Emmanuel, Granerus, Göran, Sjöberg, Folke January 2012 (has links)
Background: The increased vascular permeability seen after burn contribute to morbidity and mortality as it interferes with organ function and the healing process. Large efforts have been made to explore underlying pathophysiological mechanisms that generate increased vascular permeability after burns. Many different substances have been proposed as mediators of which histamine, serotonin and oxygen radicals are claimed most important. However, no specific blocker has convincingly been shown to be clinically effective. Early work has claimed increased histamine plasma-concentrations in humans after burn and data from animal models pointed at histamine as an important mediator. Modern human clinical studies investigating the role of histamine as a mediator of the generalized post burn increase in vascular permeability are lacking. less thanbrgreater than less thanbrgreater thanMethod: We examined histamine turnover by measuring the urinary excretion of histamine and methyl histamine for 48 h after burns in 8 patients (mean total burn surface area 24%). less thanbrgreater than less thanbrgreater thanResults: Over time, in this time frame and compared to healthy controls we found a small increase in the excretion of histamine, but no increase of its metabolite methylhistamine. less thanbrgreater than less thanbrgreater thanConclusion: Our findings do not support that histamine is an important mediator of the increased systemic vascular permeability seen after burn. / <p>Funding Agencies|Research and Development Unit, Jamtland County Council, Sweden||</p>
340

A soil property model for evaluating pesticide movement potential

Vogue, Margaret A. 09 July 1990 (has links)
Prevention of groundwater contamination by agricultural chemicals requires an understanding of the complex processes that control pesticide movement below the soil surface. Through this understanding it is possible to try to predict which areas may be most vulnerable to contamination. The many models that have been developed to characterize pesticide movement vary widely in their conceptual approach and degree of complexity. A soil properties model was developed in this thesis to determine the relative overall pesticide movement potential in Oregon agricultural soils. Its focus is ease of use in both acquisition of input values and running of the model. The model is based on soil properties important in controlling pesticide movement. It is a rating system model that uses scoring of factors and matrices to weigh the soil values. It is organized into two processes: leaching and sorption. The leaching potential is based on soil permeability and drainage class. The sorption potential is based on organic matter content and texture of the soil surface horizon(s). The interaction of these two processes results in the overall pesticide movement potential. / Graduation date: 1991

Page generated in 0.0438 seconds