• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 732
  • 339
  • 175
  • 132
  • 31
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • 14
  • 10
  • 9
  • 9
  • Tagged with
  • 1768
  • 297
  • 216
  • 172
  • 148
  • 144
  • 125
  • 114
  • 102
  • 93
  • 93
  • 93
  • 91
  • 87
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
771

Calculation of the effective permeability and simulation of fluid flow in naturally fractured reservoirs

Teimoori Sangani, Ahmad, Petroleum Engineering, Faculty of Engineering, UNSW January 2005 (has links)
This thesis is aimed to calculate the effective permeability tensor and to simulate the fluid flow in naturally fractured reservoirs. This requires an understanding of the mechanisms of fluid flow in naturally fractured reservoirs and the detailed properties of individual fractures and matrix porous media. This study has been carried out to address the issues and difficulties faced by previous methods; to establish possible answers to minimise the difficulties; and hence, to improve the efficiency of reservoir simulation through the use of properties of individual fractures. The methodology used in this study combines several mathematical and numerical techniques like the boundary element method, periodic boundary conditions, and the control volume mixed finite element method. This study has contributed to knowledge in the calculation of the effective permeability and simulation of fluid flow in naturally fractured reservoirs through the development of two algorithms. The first algorithm calculates the effective permeability tensor by use of properties of arbitrary oriented fractures (location, size and orientation). It includes all multi-scaled fractures and considers the appropriate method of analysis for each type of fracture (short, medium and long). In this study a characterisation module which provides the detail information for individual fractures is incorporated. The effective permeability algorithm accounts for fluid flows in the matrix, between the matrix and the fracture and disconnected fractures on effective permeability. It also accounts for the properties of individual fractures in calculation of the effective permeability tensor. The second algorithm simulates flow of single-phase fluid in naturally fractured reservoirs by use of the effective permeability tensor. This algorithm takes full advantage of the control volume discretisation technique and the mixed finite element method in calculation of pressure and fluid flow velocity in each grid block. It accounts for the continuity of flux between the neighbouring blocks and has the advantage of calculation of fluid velocity and pressure, directly from a system of first order equations (Darcy???s law and conservation of mass???s law). The application of the effective permeability tensor in the second algorithm allows us the simulation of fluid flow in naturally fractured reservoirs with large number of multi-scale fractures. The fluid pressure and velocity distributions obtained from this study are important and can considered for further studies in hydraulic fracturing and production optimization of NFRs.
772

Effect of methods of wetting and rainfall characteristics on crusting and hardsetting of a red-brown earth / Sikstus Gusli.

Gusli, Sikstus January 1995 (has links)
Includes bibliographical references. / xxiv, 177 p. : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The beneficial effects of tillage are often negated in Australian soils by poor aggregate structural stability. If irrigation or rain falls on exposed freshly tilled soil, crusting or hardsetting often develops on drying. Rainfall intensity, kinetic energy, rate of wetting, anticedent water contentand soil management history have been implicated in aggregate breakdown. / Thesis (Ph.D.)--University of Adelaide, Dept. of Soil Science, 1995
773

Effect of local changes to shell permeability on the gas exchange of the avian embryo / by Kerstin Wagner.

Wagner, Kerstin January 2000 (has links)
Bibliography: leaves 148-166. / xi, 166 leaves : ill. (some col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The chicken embryo's ability to match the perfusion of its chorioallantoic membrane to regional differences in shell conductance was investigated. / Thesis (Ph.D.)--Adelaide University, Dept. of Environmental Biology, 2001
774

Water transport due to wick action through concrete

Aldred, James M. January 2008 (has links)
Wick action is the transport of water through a concrete element from a face in contact with water to a drying face as occurs in basements, tunnels, slabs on grade and hollow offshore structures. Water transport through concrete due to wick action is many times greater due to pressure permeability under typical environmental conditions. Therefore wick action plays an important role in the watertightness and durability of concrete structures. Current models of wick action are based on an equilibrium developing between the rate of water entering concrete by sorptivity and leaving by water vapour diffusion where initial moisture content should not change the steady state rate, only the dominant factor in the early stages. / Wick action tests were conducted on concrete specimens of varying initial moisture condition, thickness, orientation and composition over periods ranging up to 450 days. Some wick action tests were conducted at 50% and 75% relative humidity and using a penetrating solution of reduced surface tension. The rate of wick action was found to be inversely proportional to thickness regardless of the initial moisture content of the specimen. Initial saturation was found to significantly increase wick action and moisture flow in ordinary Portland cement (OPC) and hydrophobic (HI) concretes drying at 75% RH and HI concrete drying at 50% RH. The data are consistent with the well documented hysteresis between sorption/desorption isotherms. Concretes containing silica fume (SF) and ground granulated blast-furnace slag (GGBS) did not exhibit such hysteresis. Reducing the surface tension of the pentrating solution profoundly reduced the sorptivity into dried specimens but not the depth of penetration or the steady state wick action rate. Direct measurements on osmotic flow through vacuum saturated specimens showed that osmotic effects had a limited effect on wick action at salt concentrations expected in most environmental conditions. / The research demonstrates that desorptivity from the drying surface rather than sorptivity into the wetting surface is the dominant factor determining wick action through concrete. The ease with which desorptivity can be measured and the simple empirical model developed provides practicising engineers with a useful tool to estimate water transport due to wick action through concrete in partially immersed conditions.
775

Seismic wave propagation and modelling in poro-elastic media with mesoscopic inhomogeneities.

Xu, Liu January 2009 (has links)
Biot's theory when applied to homogeneous media (involving the macroscopic flow mechanism) cannot explain the high level of attenuation observed in natural porous media over the seismic frequency range. However, several successful mesocopic inhomogeneity models have been developed to account for P wave attenuation. In this thesis I further develop the approaches to tackle S wave velocity and attenuation, to simulate transient wave propagation in poroelastic media, and to construct new models for determining the effective parameters of porous media containing mesoscopic inhomogeneities. As an important application of the double-porosity dual-permeability (DPDP) model, I have reformulated the effective Biot model using the total-field variables. This gives rise to new and more general governing equations than the previous approach based on the host phase field variables (which become a special case of the more general treatment). The analytical transient solution and dispersion characteristics for the double-porosity model and also for a poro-viscoacoustic model are derived over the entire frequency range for a homogeneous medium. The comparison between the results of the two models shows that dissipation by local mesoscopic flow of the double porosity model is very hard to fit by a single Zener element over a broad band. I chose the relaxation function to approximate the dispersion behaviour of the double porosity model just around the source centre frequency. It is shown that for most water-filled sandstones having a double porosity structure, wave propagation can be well described by the poro-viscoaoustic model with a single Zener element in the seismic frequency range. The transient solution for heterogeneous double porosity media is obtained by a numerical pseudospectral time splitting technique. This method is extended to 2.5-D poro-viscoelastic media to capture both P and S wave behaviour. I also demonstrate that if the frequency is below several Hz, then a single Kelvin-Voigt element gives an even better result than a single Zener element. I propose a two-phase permeability spherical inclusion model and obtain the dispersion curves of phase velocity and dissipation factor for the composite. I then determine the effective dynamic permeability of porous media with mesoscopic heterogeneities over the whole frequency range. This result is used to check the validity of other measures of effective dynamic permeability, deduced from the effective hydraulic permeability by replacing the permeability of the components with their dynamic values as determined from the Johnson, Koplik and Dashen (JKD) model. I also investigate the scattering of plane transverse waves by a spherical porous inclusion embedded in an infinite poroelastic medium. The vector displacement wave equations of Biot’s theory are solved as an infinite series of vector spherical harmonics for the case of a plane S-wave incidence. Then, the non-self-consistent theory is used to derive the dispersion characteristics of shear wave velocity and attenuation for a porous rock having mesoscopic spherical inclusions which are designed to represent either the patchy saturation model or the double porosity model with dilute concentrations of identical inclusions. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1457632 / Thesis (Ph.D.) -- University of Adelaide, School of Chemistry and Physics, 2009
776

Thermo-Mechanical Behaviour of Two Reconstituted Clays

Ghahremannejad, Behrooz January 2003 (has links)
The effect of temperature on soil behaviour has been the subject of many studies in recent years due to an increasing number of projects related to the application of high temperature to soil. One example is the construction of facilities for the disposal of hot high level nuclear waste canisters (150-200C) several hundred meters underground in the clay formations. Despite this, the effects and mechanism by which temperature affects the soil properties and behaviour are not fully known. A limited amount of reliable experimental data, technological difficulties and experimental methods employed by different researchers could have contributed to the uncertainties surrounding the soil behaviour at elevated temperature. Also several thermo-mechanical models have been developed for soil behaviour, but their validity needs to be examined by reliable experimental data. In this research, efforts have been made to improve the experimental techniques. Direct displacement measuring devices have been successfully used for the first time to measure axial and lateral displacements of clay samples during tests at various temperatures. The thermo mechanical behaviour of two reconstituted clays has been investigated by performing triaxial and permeability tests at elevated temperature. Undrained and drained triaxial tests were carried out on normally consolidated and over consolidated samples of M44 clay and Kaolin C1C under different effective stresses, and at temperatures between 22C and 100C. Permeability tests were carried out on samples of M44 clay at temperatures between 22C and 50C. The effects of temperature on permeability, volume change, pore pressure development, shear strength and stiffness, stress strain response and critical state parameters for different consolidation histories have been investigated by comparing the results at various temperatures. The results are also compared with the predictions of two models. It has been found that at elevated temperature the shear strength, friction angle and initial small strain stiffness reduce whereas permeability increases. The slope of the swelling line in the v-p� plane has been found to reduce with temperature. The slope of the isotropic normal consolidation line (INCL) and critical state line (CSL) in the v-p� plane have been observed to be independent of temperature, but both the INCL and the CSL shift downwards to lower locations as temperature increases. The deformations during drained cooling and re heating cycles have been found to be elastic and to simply reflect the expansivity of the soils solid particles. The thermal volume changes during undrained heating have been observed to be direct results of the thermal expansion of water and clay particles. The internal displacement measuring devices have been found to produce reliable data for the variation of strains at elevated temperature.
777

Bovine Models of Human Retinal Disease: Effect of Perivascular Cells on Retinal Endothelial Cell Permeability

Tretiach, Marina Louise January 2005 (has links)
Doctor of Philosophy (Medicine) / Background: Diabetic vascular complications affect both the macro- and microvasculature. Microvascular pathology in diabetes may be mediated by biochemical factors that precipitate cellular changes at both the gene and protein levels. In the diabetic retina, vascular pathology is found mainly in microvessels, including the retinal precapillary arterioles, capillaries and venules. Macular oedema secondary to breakdown of the inner blood-retinal barrier is the most common cause of vision impairment in diabetic retinopathy. Müller cells play a critical role in the trophic support of retinal neurons and blood vessels. In chronic diabetes, Müller cells are increasingly unable to maintain their supportive functions and may themselves undergo changes that exacerbate the retinal pathology. The consequences of early diabetic changes in retinal cells are primarily considered in this thesis. Aims: This thesis aims to investigate the effect of perivascular cells (Müller cells, RPE, pericytes) on retinal endothelial cell permeability using an established in vitro model. Methods: Immunohistochemistry, cell morphology and cell growth patterns were used to characterise primary bovine retinal cells (Müller cells, RPE, pericytes and endothelial cells). An in vitro model of the blood-retinal barrier was refined by coculturing retinal endothelial cells with perivascular cells (Müller cells or pericytes) on opposite sides of a permeable Transwell filter. The integrity of the barrier formed by endothelial cells was assessed by transendothelial electrical resistance (TEER) measurements. Functional characteristics of endothelial cells were compared with ultrastructural morphology to determine if different cell types have barrier-enhancing effects on endothelial cell cultures. Once the co-culture model was established, retinal endothelial cells and Müller cells were exposed to different environmental conditions (20% oxygen, normoxia; 1% oxygen, hypoxia) to examine the effect of perivascular cells on endothelial cell permeability under reduced oxygen conditions. Barrier integrity was assessed by TEER measurements and permeability was measured by passive diffusion of radiolabelled tracers from the luminal to the abluminal side of the endothelial cell barrier. A further study investigated the mechanism of laser therapy on re-establishment of retinal endothelial cell barrier integrity. Müller cells and RPE, that comprise the scar formed after laser photocoagulation, and control cells (Müller cells and pericytes, RPE cells and ECV304, an epithelial cell line) were grown in long-term culture and treated with blue-green argon laser. Lasered cells were placed underneath confluent retinal endothelial cells growing on a permeable filter, providing conditioned medium to the basal surface of endothelial cells. The effect of conditioned medium on endothelial cell permeability was determined, as above. Results: Co-cultures of retinal endothelial cells and Müller cells on opposite sides of a permeable filter showed that Müller cells can enhance the integrity of the endothelial cell barrier, most likely through soluble factors. Low basal resistances generated by endothelial cells from different retinal isolations may be the result of erratic growth characteristics (determined by ultrastructural studies) or the selection of vessel fragments without true ‘barrier characteristics’ in the isolation step. When Müller cells were co-cultured in close apposition to endothelial cells under normoxic conditions, the barrier integrity was enhanced and permeability was reduced. Under hypoxic conditions, Müller cells had a detrimental effect on the integrity of the endothelial cell barrier and permeability was increased in closely apposed cells. Conditioned medium from long-term cultured Müller cells and RPE that typically comprise the scar formed after lasering, enhanced TEER and reduced permeability of cultured endothelial cells. Conclusions: These studies confirm that bovine tissues can be used as a suitable model to investigate the role of perivascular cells on the permeability of retinal endothelial cells. The dual effect of Müller cells on the retinal endothelial cell barrier under different environmental conditions, underscores the critical role of Müller cells in regulating the blood-retinal barrier in health and disease. These studies also raise the possibility that soluble factor(s) secreted by Müller cells and RPE subsequent to laser treatment reduce the permeability of retinal vascular endothelium. Future studies to identify these factor(s) may have implications for the clinical treatment of macular oedema secondary to diseases including diabetic retinopathy.
778

Capillary enhanced diffusion of CO2 in porous media /

López de Ramos, Aura Luisa. January 1993 (has links)
Thesis (Ph.D.)--University of Tulsa, 1993. / Includes bibliographical references (leaves 6-25-6-26).
779

Capillary enhanced diffusion of CO2 in porous media /

López de Ramos, Aura Luisa. January 1993 (has links)
Thesis (Ph.D.)--University of Tulsa, 1993. / Includes bibliographical references (leaves 6-25-6-26).
780

Affinity-, partition- and permeability properties of the human red blood cell membrane and biomembrane models, with emphasis on the GLUT1 glucose transporter /

Lagerquist Hägglund, Christine, January 2003 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2003. / Härtill 9 uppsatser.

Page generated in 0.1151 seconds