• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 325
  • 107
  • 47
  • 29
  • 13
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 665
  • 117
  • 108
  • 104
  • 91
  • 88
  • 76
  • 72
  • 64
  • 63
  • 62
  • 61
  • 60
  • 57
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Investigation Of Transition Metal Oxides Of Perovskite, Pyrochlore And Rutile Structures Towards Realization Of Novel Materials

Mani, Rohini 07 1900 (has links)
Materials chemistry is essentially concerned with the design/synthesis of new solids endowed with functional properties that could be of relevance to today’s materials technology. Among the large variety of solid materials that attract attention, metal oxides continue to contribute significantly to current materials chemistry. A wide variety of oxide materials (based on rocksalt, spinel, corundum, perovskite, garnet, pyrochlore and other structures) and their properties have been investigated over the years. Most of these oxides are derived from the transition metals. Transition metal oxides with structures derived from metal-oxygen (MO6) octahedra, in particular, display an array of exotic properties with potential or proven technological application. While it is traditionally believed that the partially filled d shell (dn : 0 < n < 10) of the transition metal atoms plays a crucial role in deciding the electronic properties, the significance of d0 metal atoms for the properties (and structure) of transition metal oxides is not fully recognized. Magnetism (SrRuO3, Fe3O4), metallicity (ReO3, LaNiO3), colossal magnetoresistance (La1-xCaxMnO3) and superconductivity (La2xSrxCuO4, Sr2RuO4) are some of the properties that can be traced to the presence of partially filled d shell, while properties like ferroelectricity (BaTiO3), piezoelectricity (PbZr1-xTixO3) and nonlinear optical response (LiNbO3) could be traced to the presence of transition metals (TiIV, ZrIV, NbV) with d0 electronic configuration. The empty d orbitals on the metal atoms constitute the low lying unoccupied states (LUMO) that mix with the highest occupied states (HOMO) of the ligand atoms (oxygen) through special chemical bonding effects (second order Jahn-Teller effect, SOJT). This mixing results, among others, in out-of-centre distortion(s) of the MO6 octahedra and this distortion is at the heart of several properties mentioned above. Among the transition metal oxide structures based on MO6 octahedra, three structures are noteworthy: the perovskite, the pyrochlore and the rutile. The AMO3 perovskite structure consists of a three-dimensional framework of corner sharing MO6 octahedra in which the A cation occupies the dodecahedral site surrounded by twelve oxide ions. The perovskite structure can accommodate a large variety of substitutions at both the A and the M sites as well as vacancies at the A/O sites, giving a large number of derivatives. Several variants of the perovskite structure are also known, for instance, the layered perovskites and ordered perovskites. Many nonperovskite structures are also known for the composition AMO3 : hexagonal YMnO3 is an alternative structure for AMO3 composition where manganese exists as MnO5 trigonal bipyramids. The A2M2O7 pyrochlore structure is also based on a corner-connected network of MO6 octahedra which interpenetrates an A2O network. The rutile (TiO2) is a well-known structure consisting of chains of edge-sharing MO6 octahedra, which are connected through corners to adjacent chains. A large number of oxide materials based on the above three structure types have been reported : for example, perovskite [Ba3ZnTa2O9 (microwave telecommunication ceramic), Pb3MgNb2O9 (relaxor ferroelectric), Bi4Ti3O12 (high temperature ferroelectric)], pyrochlore [Nd2Mo2O7 (metallic ferromagnet), AOs2O6 for A = K, Rb, Cs (superconductor)] and rutile [TiO2 (photocatalyst), CrO2 (metallic ferromagnet), VO2 (insulator-metal transition)]. Considering the current interest in oxide materials of these three structure types which continue to generate new variants and novel properties, we undertook the present research project to synthesize new derivatives of these structure types, and characterize their structures and relevant electronic properties. In doing so, we recognized that synthesis based on an understanding of the reactivity of the constituents and crystal chemistry of the expected products plays a crucial role in this effort. Accordingly, we tailored several new compositions of AMO3, A2M2O7 and MO2 stoichiometries and adopted appropriate methodologies for their synthesis. We have characterized the structures and properties of the solid products by means of state-of-the-art methods available to us. There are two main approaches to the synthesis of nonmolecular inorganic solids: conventional ceramic route and chimie douce / soft chemistry routes. In the ceramic route, solid reactants are heated at elevated temperatures for long durations with intermittent mixing/grinding until the reaction is complete. Chimie douce routes, on the other hand, utilize gentle reactions such as dehydration, decomposition, intercalation, ion exchange, and so on to synthesize the desired phases. The ceramic route generally provides access to the thermodynamically controlled product(s), while chimie douce routes allow access to metastable phases (kinetically controlled product(s)). Disadvantages notwithstanding, the ceramic route has been the mainstay of materials chemistry and several important materials continue to be discovered / synthesized by this route. The choice of the synthetic route based on an understanding of the crystal chemical preferences and the reactivities of the constituents involved is often crucial to achieve the desired final products. The present thesis is devoted to the synthesis and investigation of MO6 octahedra-based oxides belonging to the perovskite, pyrochlore and rutile structure types wherein we have explored alternate synthetic strategies (perovskite-based Ba3MM'2O9 telecommunication ceramics and a solution route for the synthesis of ruthenium-based pyrochlores) and probed structure-property relations of perovskite oxides (Ba3MM'M''O9 oxides for various M/M'/M'' atoms) as well as formation of new derivatives of layered Aurivillius phases. In addition, we have also synthesized new noncentrosymmetric oxides possessing the YMnO3 structure. Our investigation of rutile based oxides has resulted in the discovery of a new lead-free relaxor ferroelectric material, FeTiTaO6. Given that the lone pair PbII:6s2 plays a crucial role in the ferroelectric properties of Pb-based perovskite oxides, we have also investigated members of the Pb1-xLix/2Lax/2TiO3 system for their structure and dielectric response. The present thesis describes the results of these investigations in eight chapters. Chapter 1 provides a general introduction to oxides of the perovskite, pyrochlore and rutile structures. In Chapter 2, we describe a new one-pot metathesis strategy for the synthesis of dielectric ceramics Ba3MM'2O9 (M = Mg, Ni, Zn; M' = Nb, Ta). Rietveld refinement of X-ray diffraction data shows near-complete ordering of M-site ions in many cases. The dielectric properties of the products synthesized are found to be in reasonable agreement with reported data. The synthesis of ordered materials at lower temperatures (~1100 °C) than that employed in the conventional ceramic route (~1500 °C) is a significant result of this work. Chapter 3 presents a study of Ba3MIIMIVWO9 (MII = Ca, Zn; MIV = Ti, Zr) perovskite oxides for the purpose of synthesizing new dielectric ceramic materials and to gain understanding of the factors that stabilize 3C vs. 6H structures. In general, a 1:2-ordered 6H perovskite structure is stabilized at high temperatures (1300 °C) for all of the Ba3MIITiWO9 oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba2(Zn2/3Ti1/3)(W2/3Ti1/3)O6, is obtained at 1200 °C for Ba3ZnTiWO9. A metastable perovskite, Ba3CaZrWO9, that adopts the 1:1 3C structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d0-induced distortion of metaloxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the Ba3MIIMIVWO9 series. In Chapter 4, we describe the synthesis and investigation of the structure and dielectric properties of Ba3MIIITiMVO9 (MIII = Fe, Ga, Y, Lu; MV = Nb, Ta, Sb) perovskite oxides. The MV = Nb, Ta oxides adopt disordered/partially ordered 3C perovskite structures, where all the MIII/Ti/MV metal-oxygen octahedra are corner-connected. In contrast, the MV = Sb oxides show a distinct preference for the 6H structure, where SbV/TiIV metal-oxygen octahedra share a common face, forming (Sb,Ti)O9 dimers, that are corner-connected to the MIIIO6 octahedra. Investigation of dielectric properties of MIII = Y/Lu, MV = Nb/Ta oxides reveals a normal low loss dielectric behaviour with ε = 30 – 50 in the temperature range 50 – 350 °C. The MIII = Fe, MV = Nb/Ta members show a dielectric behaviour similar to relaxor ferroelectric materials. Chapter 5 deals with a study of isomorphous substitution of several metal atoms in two Aurivillius structures, Bi5TiNbWO15 and Bi4Ti3O12, in an effort to probe structure-property correlations. These investigations have led to the synthesis of new derivatives, Bi4LnTiMWO15 (Ln, = La, Pr; M = Nb, Ta), as well as Bi4PbNb2WO15 and Bi3LaPbNb2WO15, that largely retain the Aurivillius intergrowth structure of the parent oxide Bi5TiNbWO15, but characteristically tend toward a centrosymmetric / tetragonal structure for the Ln-substituted derivatives. On the other hand, coupled substitution, 2TiIV Æ MV + FeIII in Bi4Ti3O12, yields new Aurivillius phases, Bi4Ti3-2xNbxFexO12 (x = 0.25, 0.50) and Bi4Ti3-2xTaxFexO12 (x = 0.25) that retain the orthorhombic noncentrosymmetric structure of the parent Bi4Ti3O12. Chapter 6 describes the design and synthesis of a new series of noncentrosymmetric oxides, R3Mn1.5CuV0.5O9 (R = Y, Ho, Er, Tm, Yb, Lu) possessing the YMnO3 structure. Investigation of the Lu-Mn-Cu-V-O system revealed the existence of an isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x ≤ 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserves the noncentrosymmetric RMnO3 structure. An exploratory investigation of the synthesis, structure and electronic properties of new ruthenium(IV) pyrochlore oxides and their manganese-substituted derivatives is presented in Chapter 7. The richness of the electronic properties of ruthenium-based metal oxides is affirmed by the results which revealed several novel electronic ground states : a metallic and Pauli paramagnetic state for BiPbRu2O6.5 that turns into a semiconducting ferromagnetic spin-glass state at 50 K for BiPbRuMnO6.5 ; a metallic state that likely shows a charge density wave (CDW) instability at 50-225 K for Bi1.50Zn0.50Ru2O6.75, that is suppressed by manganese substitution in Bi1.50Zn0.50Ru1.75Mn0.25O6.50, and a metallic ferromagnetic spin-glass-like state for Pb2Ru1.75Mn0.25O6.15. We describe the investigation of the structure and dielectric properties of rutile-based MTiTaO6 (M = Al, Cr, Fe) in Chapter 8. All the oxides possess disordered rutile structure. FeTiTaO6 shows a strong relaxor ferroelectric effect, while CrTiTaO6 shows a weaker relaxor ferroelectric behaviour. This work is significant for two reasons: the new material is lead-free and it is based on the rutile structure, unlike the conventional relaxors which are mostly derived from the perovskite structure. The work presented in the thesis is carried out by the candidate as a part of the Ph.D. training programme and most of it has been published in the literature. She hopes that the studies reported here will constitute a worthwhile contribution to materials chemistry in general.
242

Perovskite Related Oxides: Development Of New Synthetic Methods, Materials And Properties

Mandal, Tapas Kumar 09 1900 (has links)
Oxides of ABO3 composition (A = alkali, alkaline earth or rare earth metal in general, B = transition metal) constitute a large family of metal oxides of current interest to solid state and materials chemistry. Among the several structure types exhibited by ABO3 oxides (ilmenite, LiNbO3, perovskite, YAIO3/YMnO3, KSbO3, pyrochlore, among others), the perovskite structure is probably the most well known and widely investigated. The ideal perovskite structure consists of a three-dimensional (3D) framework of corner-sharing BO6 octahedra in which the A cation resides in the dodecahedral site surrounded by twelve oxide ions. The ideal cubic structure occurs when the Gold Schmidt’s tolerance factor, t = (rA + ro)/{V2 (rB + ro)}, adopts a value of unity and the A-O and B-O bond distances are perfectly matched. The flexibility of the perovskite structure towards a wide variety of substitutions at both A and B sites gives rise to a very large number (several hundreds) of perovskite derivatives with subtle variations in structure. The perovskite structure can also tolerate vacancies at both the A and O sites giving ordered superstructures. Members of y4BO3 oxides have numerous properties that find technological application, such as nonlinear optical response (LiNbO3), Ferro electricity (BaTiO3), piezoelectricity (PbZn_xTixO3), magneto ferroelectricity (YMnO3), superconductivity (Bai_xKxBi03)5 colossal magnetoresistance (La^xCaxMnO3) and ionic conductivity [(Lil_a)TiO3] Ordering of cations at the A and B sites of the perovskite structure is an important phenomenon. Ordering of B site cations in double (/42BB'O6) and multiple (/43BB'2Og) perovskites gives rise to newer and interesting materials properties For example, 1*1 ordered Sr2FeMoO6 and Sr2FeReO6 are half-metallic ferrimagnets; Pb3MgNb2O9 is a relaxor ferroelectric; Ba3ZnTa2O9 is a low loss dielectric used in telecommunication and, last but not least, Ba3CoNb2O9 is a visible light driven photocatalyst. Realization of these properties in these materials depends crucially on the ordering/or otherwise of the B site cat ions in the perovskite structure. Furthermore, ordering of not only the metal atoms but also the oxygen/oxygen vacancies in the perovskite structure is equally important for the occurrence of superconductivity in the cuprate superconductor, YBa2Cu3O7. The ideal perovskite structure gives way to hexagonal YMnO3/YAIO3 structure for smaller A cations (tolerance factor, t < 1). Oxides of this structure are attracting current attention for the realization of multiple magnetoferroic properties. On the other hand, for larger A cations (tolerance factor, t > 1), various perovskite polytypic structures are formed. For example, BaNiO3 forms a 2H polytypic structure, SrMnO3 and BaRuO3 adopts a 4H and 9R structures respectively, where the SO6 octahedra share faces or faces and corners. Besides the foregoing 3D perovskites, a number of layered variants of the perovskite structure are also known. The most common layered perovskites are the Aurivillius phases, (Bi2O2)[A»-iBnO3n+iL the Ruddlesden-Popper phases, /4'2|7ln_iBnO3n+1], and the Dion-Jacobson phases, A[An^BnOzn+-\]' The two-dimensional (2D) perovskite unit, [^n-iBnOsn+i], which could be visualized as formed by slicing the 3D perovskite structure along <001>p is common for all the three layered perovskite series. The perovskite slabs are stacked alternately with various charge-balancing units, for example, with [Bi2O2]2+ in the Aurivillius phases and two alkali/alkaline earth cations (A+JA2+) in the Ruddlesden-Popper phases etc. Members of the layered perovskites are also important from the point of view of materials properties. For example, 2D magnetism (K2NiF4), superconductivity (La2-xSrxCuO4), ion exchange, Bronsted acidity, intercalation, exfoliation (K2La2Ti3Oio and CsCa2Nb3O10), photo catalysis (Rb2La2Ti30io) are some of the important materials properties found in layered perovskites. The high Tc-superconductors, Bi2Sr2CaCu2O8+XJ TI2Ba2Ca2Cu3Oi0, TIBa2Ca2Cu3O9 and HgBa2Ca2Cu3O8+x, also belong to the family of layered perovskites where the defective perovskite cuprate sheets are interleaved by other 2D entities like (Bi2O2), (TI2O2), (TIO) or (HgOx). In addition, Aurivillius phases, such as Bi2SrTa209 and Bi325Lao75Ti3Oi2, in thin film geometry are candidate materials for non-volatile ferroelectric memory devices. Synthesis plays a key role in realizing new structures and materials properties for ABO3 oxides. The conventional synthetic methods (ceramic method) involve mixing and heating of solid reactants at elevated temperatures. Although this approach continues to be employed to synthesize new materials, it is often limited by the fact that it yields thermodynamically stable phases. Since many of the perovskite oxides showing useful materials properties are metastable in nature and are required in the form of fine particles (free-standing / monodisperse / submicron or nanometer dimensions) for application, the ceramic methods are of no avail for this purpose. Therefore, materials chemists constantly endeavor to develop alternate synthetic routes that enable them to synthesize novel oxides under mild conditions. Typical examples of metastable perovskites are: the super conducting cuprates (e.g. TlosPbosS^CaC^Og) and perovskite based lithium ion conductors (La2/3-xLi3XDi/3-2xTiO3). Also the control of oxidation states in double perovskites, such as Sr2FeMoO6 and Sr2FeRe06 and pyrochlores such as Pb2MnReC>6, cannot be achieved by conventional means. Therefore, the synthesis of such metastable phases requires special synthetic strategies that involve soft chemistry (chimie douce) methods where mild reactions/reaction conditions are employed to access metastable phases. The present thesis is mainly devoted to an investigation of perovskite related oxides towards developing new synthetic strategies and materials as well as exploring hydrogen insertion - a novel materials property - in certain members of this family. Solid-state metathesis (SSM) reactions provide a convenient route for the synthesis of a wide variety of non-oxide ceramic materials such as, bondes, carbides, silicides, pnictides and chalcogenides. A typical metathesis reaction, for example, M0CI5 + 5/2 Na2S -» MoS2 + 5 NaCI + 1/2 S (1) involves exchange of atoms/ions between the reactants and is accompanied by a large enthalpy change (AHm = - 890 kJ mol"1) and high adiabatic reaction temperature (Tm = 1413 °C). The reactions are often self-propagating and believed to be driven by the formation of stable salt byproducts such as alkali halides with high lattice energy. In our laboratory we have developed a different kind of metathesis reaction for the synthesis of perovskite related oxides, a typical example being, K2La2Ti30io + 2 BiOCI -* [Bi2O2]La2Ti3O10 + 2 KCI. A major difference between metathesis reactions (1) and (2) is that unlike (1), reaction (2) is not self-propagating, requiring longer duration. In this study, we have investigated metathesis reactions of the second kind at some length for the synthesis of perovskite related oxides. We found that rocksalt oxides such as UMO2 (M = Mn, Co) and Li2TiO3 constitute convenient precursors for the formation of v4BO3 perovskite oxides in metathesis reactions with appropriate reaction partners such as halides, oxyhalides or sulphates, LiCoO2 + LaOCl -» LaCoO3 + LiCt (3) LiMnO2 + LaOCl + x/2 O2 -> LaMnO3+x + LiCI (4) Li2TiO3 + PbSO4 -» PbTiO3 + Li2SO4. (5) We could synthesize not only well known ABO3 oxides but also functional perovskites such as PbZr0 4sTio 52O3 (PZT), La2/3Cai/3MnO3 as well as superconducting BaPbo75Bio2s03 by this method. We could also synthesize La2CuO4 and its superconducting analogues, La185^oi5Cu04 (A = Sr, Ba), by the same method using Li2CuO2 and LaOCl. For the synthesis of double perovskites A2BB%OQ by this method however, appropriate lithium containing rocksalt precursor oxides are not known in the literature. Therefore, we first synthesized rocksalt precursor oxides of the general formula Li4MWO6 (M = Mg, Mn, Fe, Ni) and established their identity. Using these precursor oxides, we could synthesize the double perovskite oxides Sr2MWO6 (M = Mg, Mn, Fe, Ni) in the metathesis reaction Li4MWO6 + 2 SrCI2 -» Sr2MWO6 + 4 LiC Significantly, the double perovskites are formed with an ordered structure at relatively low temperatures (750 - 800 °C) as compared to the high temperatures (up to 1400 °C) usually employed for the synthesis of these materials by conventional ceramic approach. Next, we investigated ABO$ compositions corresponding to the formula for 6 = Cu and Ni, where we could obtain a YAIO3 superstructure consisting of triangular Cu clusters for 6 = Cu, whereas a perovskite phase for B = Ni. Moreover, the Cu-phase appears to be a unique line phase formed around LasCi^VOg composition, whereas a continuous series of GdFeO3-like perovskite oxides are formed for LaNii»xVxO3 (0 < x < 1/3)forS = Ni. Considering the current interest in bringing different transition metal ions (d°/dn electronic configuration) in the same perovskite related structure towards developing multiferroic materials, we investigated the substitution of aliovalent cations in a typical Aurivillius phase, Bi2Sr2Nb2TiOi2. We have characterized new aliovalent cation substituted Aurivillius phases, Bi2SrNaNb2TaOi2, Bi2Sr2Nb2Zr012J Bi2Sr2Nb2 5Feo50i2 and Bi2Sr2Nb2 ezZno 33O12. Lastly, we investigated the interaction of hydrogen with perovskite oxides, /\MnO3 (A = Ca, Sr, Ba) in an attempt to characterize possible existence of hydrogen-inserted oxide materials. An oxide-hydride of the formula LaSrCoO3H07 has recently been reported in the literature. Conventionally, the interaction of hydrogen with perovskite related oxides is known to result in either anion deficient phases (e.g. CaMnO3 -> Ca2Mn205), or hydrogen inserted materials, 'hydrogen bronzes', (e. g. HXWO3, HxBaRuO3), where hydrogen acts as an electron donor (H -^ H+ + e). We have characterized a new mode of hydrogen incorporation in Pt dispersed BaMnO3 and SrMnO3. Detailed investigation of the hydrogen sorption behaviour of 1 atom % Pt dispersed materials showed that about 1.25 mass % of hydrogen is inserted per mole of BaMnO3/Pt, corresponding to an insertion of - 3 hydrogen atoms giving 'BaMnOsHs'. While the exact nature of inserted hydrogen is yet to be established unambiguously, our results suggest that the inserted hydrogen is unlikely to be protonic (H+) in the hydrogen insertion product, BaMnO3H3. The results of these investigations are presented in the thesis consisting of seven chapters. Chapter 1 gives an overview of perovskite related oxides - structure, properties and synthesis. Chapter 2 presents metathesis as a general route for the synthesis of ABO3 oxides and illustrates the method by transforming several rocksalt oxides such as LiCoO2, Li2Mn03 and Li2Ti03 to corresponding ABO3 oxides, LaCoO3, /\MnO3 and ATiO3 (A = Ca, Sr, Ba). Uniformly in all the cases, the perovskite oxides are obtained in the form of loosely connected submicron sized particles at considerably lower temperatures than those usually employed for their synthesis by ceramic methods. Thermodynamic calculations have also been carried out to probe into the driving force of metathesis reactions involved in the synthesis. Chapter 3 describes an extension of the metathesis route for the synthesis of double perovskites, Sr2MWO6 (M = Mg, Mn, Fe, Ni). For this purpose, first we synthesized new rocksalt oxides of the general formula, Li4MWO6 (M = Mg, Mn, Fe, Ni). The oxides adopt rocksalt superstructures related to Li4MgReO6 (for M = Mg, Mn, Ni) and U4WO5 (for M = Fe). Metathesis reaction between Li4MWO6 and SrCi2 at 750 - 800 °C yields the corresponding double perovskites where the octahedral site M and W are ordered in the long range. Formation of ordered perovskite oxides at relatively low temperatures (750 - 800 °C) by the metathesis route is a significant result, considering that synthesis of these oxides by conventional ceramic method requires much higher temperatures (1300 - 1400 °C) and prolonged annealing. Synthesis of La2CuO4, Nd2CuO4 and super conducting La-j 85>4oi5Cu04 (A = Sr, Ba) by the metathesis route is described in Chapter 4. Chapter 5 deals with synthesis, structure and magnetic properties of mixed-metal oxides of ABO3 composition in the La-6-V-O (6 = Ni, Cu) systems. While the B = Ni oxides adopt GdFeO3-like perovskite structure containing disordered nickel and vanadium at the octahedral B site, La3Cu2VO9 crystallizes in a YAIO3-type structure. A detailed investigation of the superstructure of nominal La3Cu2VO9 by WDS analysis and Rietveld refinement of powder XRD data reveals that the likely composition of the phase is Lai3Cu9V4O38 5, where the Cu and V atoms are ordered in a Vi3ah (ah = hexagonal a parameter of YAlCMike subcell) superstructure. Magnetic susceptibility data support the proposed superstructure consisting of triangular Cu3 clusters. The present work reveals the contrasting behaviour of La-Cu-V-O and La-Ni-V-0 systems, while a unique line-phase related to YAIO3 structure is formed around La3Cu2VO9 composition in the copper system, a continuous series of perovskite-GdFeO3 solid solutions, LaNi1.0CVxO3 for 0 < x < 1/3 seems to obtain in the nickel system. The chapter also describes the formation of a new transparent Cu(l) oxide, Lai4V6CuO365, and its characterization. This oxide was obtained during attempts to grow single crystals of LasC^VOg. Single crystal structure determination of Lai4V6CuO36 5 showed that the structure contains isolated VO43" tetrahedra and [OCuO]3" sticks dispersed in a lanthanum oxide network. Films of Lai4V6CuO36 5 were grown on R-plane sapphire by using pulsed laser deposition. Rutherford backscattering spectroscopic and X-ray diffraction analyses of the films showed oriented growth of the title phase, with an optical band gap of -~ 5 eV and n-type conductivity Chapter 6 presents the work on the flexibility of the Aurivillius structures for substitution of aliovalent/isovalent cations at both A and 6 sites of the perovskite slabs. For example, in a typical n = 3 member, Bi2Sr2Nb2TiOi2, substitution of both Sr and Na at the A site and Ta at the B site has enabled us to synthesize a new n = 3 member, Bi2SrNaNb2Ta0i2, where we see a preference of Nb for the terminal octahedral sheets. Similarly, aliovalent substitution only at the B site of the perovskite slabs of Bi2Sr2Nb2TiOi2 has yielded new members for specific compositions, Bi2Sr2Nb2ZrOi2, Bi2Sr2Nb2 5Feo50i2 and Bi2Sr2Nb2 67Zno33012 that tend to be oxygen-stoichiometric. The latter phases again show a preference of Nb for the terminal octahedral sites that are strongly distorted as compared to the middle octahedral site. This chapter also describes substitution of La3+ for Bi3+ in the perovskite slabs of Bi4Nb30i5 stabilizing a new series of n = 1/ n = 2 intergrowth Aurivillius phases of the formulas, Bi4LnNb3Oi5 (Ln = La, Pr, Nd) and Bi4LaTa30i5. The present work suggests that replacement of Bi3+: 6s2 lone pair ion by non-6s2 cations such as Sr2"* and La3+ in the perovskite slabs of Aurivillius phases tends to render the structure Centro symmetric and the materials lose NLOSHG response. Chapter 7 describes our investigation of the interaction of hydrogen with alkaline earth manganites (IV) >AMnO3 (>A = Ca, Sr, Ba) dispersed with 1 atom % Pt. The result shows an unprecedented uptake of hydrogen by BaMnO3/Pt to the extent of - 1.25 mass % at moderate temperatures (190 - 260 °C) and ambient pressure. Gravimetric sorption isotherms and mass spectrometric analysis of the desorption products indicate that approximately three hydrogen atoms per mole of BaMnCVPt is inserted reversibly. The nature of hydrogen in the insertion product, BaMnO3H3, is discussed in the light of the structure of BaMnC>3. The work presented in the thesis is carried out by the candidate as a part of the Ph. D. training programme and most of it has been published in the literature. He hopes that the studies reported here will constitute a worthwhile contribution to the materials chemistry of ABO3 oxides in general.
243

Nonlinear Electrical And Magnetotransport Properties Of ZnO/Perovskite Manganite Ceramic Composites

Vijayanandhini, K 10 1900 (has links)
This thesis deals with the investigations on the nonlinear electrical and manganetotransport properties of polycrystalline multi-phase ceramic composites of Zno/pervoskite manganite. Multifunctional properties are studied such as the enhanced low-field magnetoresistance(LFMR). magnetically tuneable low-voltage nonlinear current-voltage (I-V) characteristics with larger nonlinearity coefficients suitable for semiconducting and magnetoelectric devices. A brief introduction on the structure-property correlations, electronic and magnetic structures, nonlinear electrical conduction, phase separation, grain size and grain boundary effects on transport properties of manganites are presented. The nonlinear current-voltage characteristics of ZnO based varistors are also summarized. The thesis describes the synthesis of the ceramics and the methodology of different techniques utilized in characterizing the samples. The phase conversions in calcium manganite with changing Ca/Mn ratios as well as the oxygen non-stoichiometry and their influence on electrical transport properties were studied. The realization of low-voltage varistors prepared from ZnO+ CaMnO3 ceramic composites was described. An energy band model consisting of n-p-n heterojunctions of n-ZnO1-γ:Mn/p-CMZO/n-ZnO1 γ:Mn has been proposed in order to explain the large nonlinearity coefficients obtained at low field-strengths of 1.8 to 12 V/mm. The detailed investigationos on the structural identification and physico-chemical analyses of Ca4Mn7Zn3O21-δ(CMZO) phases having the beta-alumina or magnetoplumbite-type structures were carried out. The thesis also embodies the magnetically tuneable nonlinear I-V characteristics and the magnetotransport properties of ZnO/La(Sr)MnO3 and ZnO/La(Ca,Sr)MnO3 ceramic composites. The present investigations demonstrate that the ferromagnetic insulating (FMI) La06 Sr04Mn1-yZnyO3(y = 3 to 8 at.%) when present as minor phase in ZnO1- γ:Mn ceramics enables in attaining magnetically tunealbe nonlinear I-V characteristics. Wherein, the dominant ZnO1- γ:Mn phase remains paramagnetic. The results also indicate that the prevalence of ferromagnetism in ZnO1-γ:Mn is not significant for realizing magnetically tuneable I-V curves. The controversial results related to the existence of ferromagnetism in ZnO(doped)leading to diluted magnetic semiconductors(DMS) have been investigated. Another novel aspect of the present work is the low-field magnetoresistive(LFMR) property of ZnO/La(Sr)MnO3 and ZnO/La(Ca.Sr)MnO3 ceramic composites which been explained on the basis of spin-polarised tunneling across the intergrain regions. The influence of Zn2+ as a diamagnetic substitutent in modifying the crystallographic phase content, electrical transport and magnetic properties of Lao6Sro4MnO3 were studied in detail. The results point towards the fact the large decrease of Tc and Ms at lower Zn contents(≤ 8 at.%)is due to the dominant role played by the excess oxygen vacancy (Vo) as an electron donor in p-type Lao6Sro4Mn1-yZnyO3-δ rather than the charge compensatively predictable values. The modifications of electronic and magnetotransport properties were carried out on Lao6Sro4MnO3 substituted with diamagnetic ions such as Mg2+ - Al3+ - Ti4+ - Nb5+ - Mo6+ or W6+ at Mn-sublattice. The TEM studies including HREM results point to the fact the large ΔT(= Tc-TM-1)is accountable in terms of charge conduction within the electronically heterogeneous phase mixtures of charge ordered insulating (CO1) bi-stripes prevailing within the charge disordered FMI phases.
244

Phénomènes de non-stoechiométrie dans les systèmes BaFeO3-y et BaxLa1-xFeO3-y

Parras-Vazquez, Marina 28 September 1989 (has links) (PDF)
Les phénomènes de non-stoehiométrie dans les ferrites du système Ba-La-Fe-O dont les structures dérivent de la perovskite, ont été étudiés au moyen de diverses techniques (diffraction X, HRTEM, spectroscopie Mössbauer...).<br />Dans le système BaFe4+O3-BaFe3+O2.50 la structure et l'ordre des lacunes des phases BaFeO3-y dépendent du taux de lacunes (y) et corrélativement du rapport Fe4+/Fe3+ (t / (1-t)) directement lié aux conditions de synthèse (PO2, T). Pour y <~ 0.35, l'empilement est un mélange des types "hexagonal compact" et "cubique compact" conduisant à des structures de type perovskite 6H ou 12H lacunaires en oxygène alors que pour des valeurs de y plus élévées (y ~> 0.35) il devient "cubique compact". Dans ce domaine de compositions, la non-stoichiométrie est accomodée grâce à la formation de structures en microdomaines soit d'une phase monoclinique (BaFeO2.50), soit d'une phase orthorombique de composition voisine de BaFe02.55.<br />En revanche pour 0.25 < y < 0.37, on observe des phénomènes d'intercroissances entre une phase de type 6H et une phase dérivée de la perovskite cubique. Pour y <= 0.25, aucun ordre des lacunes à longue distance n'apparaît.<br />Dans le système LaFeO3-BaFeO2.50, quatre phases différentes, surstructures de la perovskite cubique, apparaissent en fonction du rapport Ba/La (x/(1-x)). Leur microstructure est discutée en fonction de la composition, de l'ordre Ba-La et du taux de lacunes (y).
245

High Open-Circuit Voltage of Inverted All-Inorganic Perovskite Solar Cells via Metal Halide Incorporation

Yilmazoglu, Unal Cagatay 26 July 2023 (has links)
No description available.
246

Quasi-Two-Dimensional Halide Perovskite Materials For Photovoltaic Applications

Aidan Coffey (12481935) 29 April 2023 (has links)
<p>As energy demands for the world increase, the necessity for alternate sources of energy are critical. Just in the United States alone, 92 quadrillion British thermal units (Btu) were used in 2020. As political and geographical pressures surrounding oil increase, along with the growing concern for climate, the drive to explore alternative and renewable means for harvesting energy is on the rise. Solar cells, also known as photovoltaics (PVs), are an attractive renewable source and have been developed as an alternative energy means for over 60 years. When considering losses due to atmospheric absorption and scattering, the Earth’s surface gets about 1000 W/m2 of energy from the sun, which is why there are research efforts around the world trying to maximize the efficiency of solar cells.</p> <p>Organic-inorganic halide perovskites provide for ideal absorbing layers that feature long carrier lifetime and diffusion lengths, strong photoluminescence, and promising tunability. Furthermore, the solution-processing methods used to make these perovskites ensure that the solar cells will remain low-cost and have easy scale-up possibilities. The main problem perovskites is that they degrade in the presence of water, thus leading to decreased device performance.</p> <p>In this work two approaches are investigated to increase moisture stability. The first investigates incorporation of thiols as pseudohalides into the 2D perovskite structure. Instead of the theorized perovskite, two novel 2D compounds were created, Pb<sub>2</sub>X(S-C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> (X= I, Br, Cl) and PbI<sub>1.524</sub>(S-C<sub>6</sub>H<sub>5</sub>)<sub>0.476</sub>. While not perovskites, this study gives insight into the effect that the thiol may have on determining structure when comparing –S-C<sub>6</sub>H<sub>5</sub> with –SCN groups. Future work will explore more electronegative thiols that will be used to make moisture resistant, tunable 2D perovskites.</p> <p>The second approach is to incorporate longer organic ammonium cations into the perovskite structure to produce quasi-2D perovskite films fabricate them into devices. Adding in electronically insulating ligands leads to a stricter requirement for vertically aligned 2D films and special care must be taken to have efficient charge collection. The current field has successfully incorporated short ligands such as butylammonium (BA) into PVs, however the extension to larger and more beneficially hydrophobic ligands has been very scarce. In this work, a novel solvent engineering system is developed to create vertically aligned quasi-2D perovskite absorbing layers based off of a bithiophene ligand (2T). These absorbing layers are then characterized and incorporated into efficient PV devices. Generalizations to solvent conditions related to ligand choice is discussed herein, creating deep insights into incorporating more conjugated ligands into devices.</p>
247

Exploration and Engineering of Physical Properties in High-Quality Sr<sub>2</sub>CrReO<sub>6</sub> Epitaxial Films

Lucy, Jeremy M. 13 October 2015 (has links)
No description available.
248

A crystallographic study of group I niobate perovskites

Peel, Martin D. January 2015 (has links)
In this work, X-ray and neutron powder diffraction experiments and complementary solid-state NMR spectroscopy are used to characterise NaNbO₃-based perovskite phases. Samples of NaNbO₃, KₓNa₁₋ₓNbO₃ and LiₓNa₁₋ₓNbO₃ are synthesised using a variety of techniques and subsequently characterised. For NaNbO₃, it is observed that at least two room temperature perovskite phases can co-exist, P and Q, and that each phase can be formed exclusively by manipulating the synthetic approach utilised. Phase Q can also be formed by the substitution of a small amount of K⁺ or Li⁺ for Na⁺. The room temperature phases of these materials are also analysed using NMR spectroscopy and X-ray diffraction. It is found that, for KₓNa₁₋ₓNbO₃, preferential A-site substitution of K⁺ for Na⁺ may occur, and this observation is supported using a range of NMR techniques and density functional theory calculations. The high-temperature phase behaviour of NaNbO₃ and KₓNa₁₋ₓNbO₃ (x = 0.03 to 0.08) is analysed using high-resolution neutron and X-ray powder diffraction to determine when phase changes occur and to characterise each phase. Characterisation of these materials is supported used complementary symmetry mode analysis. For the LiₓNa₁₋ₓNbO₃ perovskite system, complex phase behaviour is observed at room temperature. High-resolution neutron powder diffraction data shows that, over the range 0.08 < x < 0.20, phase Q may co-exist with a rhombohedral phase, with the proportions of the two highly dependent upon the synthetic conditions used. Furthermore, using X-ray diffraction and NMR spectroscopy, phase Q is shown to undergo a crystal-to-crystal transition to the rhombohedral phase. For higher values of x, two compositionally-distinct rhombohedral phases are formed, termed Na-R3c and Li-R3c, as determined from neutron powder diffraction data.
249

Manganese titanium perovskites as anodes for solid oxide fuel cells

Ovalle, Alejandro January 2008 (has links)
A new family of perovskite titanates with formulae La4+nSr8-nTi12-nMnnO38 and La4Sr8Ti12-nMnnO38-δ have been investigated as potential fuel electrode materials for SOFCs. The series La4+nSr8-nTi12-nMnnO38 present layered domains within their structure. As such layers appear to have a large negative effect over the electrochemical properties only a few compounds have been characterised. The series La4Sr8Ti12-nMnnO38-δ present a rhombohedral (R-3c) unit cell at room temperature which becomes cubic when increasing the temperature up to 900°C both in air and in reducing conditions. The primitive volume correlates with the oxygen content for the reduced samples. TGA and magnetic studies have revealed that the Mn present is mainly as Mn⁺³. Preliminary HRTEM investigations have revealed that some crystallographic shears distributed randomly within a perovskite matrix remain in the structure, which implies that the oxygen overstoichiometry is compatible with rhombohedral distortions in the oxygen sublattice. Mn substitution does not have a large impact on the bulk conductivity of the phases studied, which remains close to the values observed in other related titanates, although the grain boundary contributions are largely improved. Relatively low polarisation resistances were observed under both hydrogen and methane conditions for the lowest n compounds of the series. The anodic overpotential for n=1 was fairly low to those reported in the literature for other materials and especially for titanate-based anodes, i.e. a value of 55mV at 0.5A/cm2, at 950°C, under wet hydrogen was obtained. Additionally, a value 72mV was obtained in the same conditions under methane. These values indicate that the use of Mn as dopant for perovskite-related titanates enhanced electrochemical performance of these anodes, especially at high temperatures.
250

Chemical Structure and Physical Properties of Organic-Inorganic Metal Halide Materials for Solid State Solar Cells

Safdari, Majid January 2017 (has links)
Abstract Methylammonium lead (II) iodide has recently attracted considerable interest which may lead to substantial developments of efficient and inexpensive industrial photovoltaics. The application of this material as a light-absorbing layer in solid-state solar cells leads to impressive efficiency of over 22% in laboratory devices. However, for industrial applications, fundamental issues regarding their thermal and moisture stability need to be addressed. MAPbI3 belongs to the perovskite family of materials with the general formula ABX3 ,where is the organic cation (methylammonium) which is reported to be a major source of instability. In this work, a variety of alkyammonium lead (II) iodide materials have been synthesized by changing the organic cation, to study the relationship between the structural and physical properties of these materials. [(A)PbI3] and (A)PbI4 series were studied. Three dimensional (3D) networks (MAPbI3,MAPbBr3), two dimensional (2D) layered systems (BdAPbI4, HdAPbI4, OdAPbI4), and one dimensional (1D) columns (EAPbI3, PAPbI3, EAPb2I6) were found for the materials. [PbI6] octahedral structural units were repeated through the material network depending on the dimensionality and connectivity of the materials. Where a bulkier cation was introduced, the crystallographic unit cell increased in size which resulted in lower symmetry crystals. The connectivity of the unit cells along the material networks was found to be based on corner-sharing and face-sharing. Lower dimensionality resulted in larger bandgaps and lower photoconductivity, and hence a lower light conversion efficiency for the related solar cells. The thermal and moisture stability was greater in the 1D and 2D materials with bulkier organic cations than with methylammonium. In total, an overview is provided of the relationship between the chemical dimensionality and physical properties of the organic-inorganic lead halide materials with focus on the solar cell application. / Svenska sammandrag: Metylammoniumbly(II)jodid har under de senaste åren genererat ett stort intresse som ett möjligt material for utveckling av effektiva och på industriell skala billiga solceller. Detta material har använts som ljusabsorberande skikt i fasta solceller med imponerande omvandlingseffektiviteter på över 22% för solceller i laboratorieskala. För att denna nya typ av solceller ska bli intressanta för produktion på industriell skala, så behöver grundläggande frågeställningar kring materialens stabilitet avseende högre temperaturer och fukt klargöras. MAPbI3 har formellt perovskitstruktur med den allmänna formel ABX3, där A utgörs av den organiska katjonen (metyammoniumjonen) och som kan kopplas till materialets instabilitet. I denna avhandling har olika alkylammoniumbly(II)jodidmaterial syntetiserats där den organiska katjonen modifierats med syftet att studera växelverkan mellan struktur och fysikaliska egenskaper hos de resulterande materialen. Material av olika dimensionalitet erhölls; tredimensionella (3D) nätverk (MAPbI3, MAPbBr3), tvådimensionella (2D) skiktade strukturer (BdAPbI4, HdAPbI4, OdAPbI4), och endimensionella (1D) kedjestrukturer (EAPbI3, PAPbI3, EAPb2I6). Flera nya lågdimensionella material (2D och 1D) tillverkats och karaktäriserats för första gången. Enkristalldiffraktometri har använts för att erhålla materialens atomära struktur. Strukturen hos material tillverkade i större mängder konfirmerades genom jämförelse mellan resultat från pulverdiffraktion och enkristalldiffraktion. Den oktaedriska strukturenheten [PbI6] utgör ett återkommande tema i materialen sammankopplade till olika dimensioner. Då större organiska katjoner används karaktäriseras i regel strukturerna av större enhetsceller och lägre symmetri. De lågdimensionella materialen ger typiskt störe elektroniskt bandgap, lägre fotoinducerad ledningsförmåga och därför sämre omvandlingseffektiviteter då de används i solceller. De lågdimensionella materialen (1D och 2D) som baseras på de större organiska katjonerna uppvisar bättre stabilitet med avseende på högre tempereratur och fukt. De tvådimensionella materialens elektroniska struktur har karaktäriserats med hjälp av röntegenfotoelektronspektroskopi, liksom röntgenabsorptions- och emissionsspektroskopi. Resultat från teoretiska beräkningar stämmer väl överens med de experimentella resultaten, och de visar att materialens valensband huvudsakligen består av bidrag från atomorbitaler hos jod, medan atomorbitaler från bly främst bidrar till edningsbandet. Sammantaget erbjuder avhandlingen en översikt av sambandet mellan kemisk dimensionalitet och fysikaliska egenskaper hos ett antal organiska/oorganiska blyhalogenidmaterial med fokus på tillämpning i solceller. / <p>QC 20170123</p>

Page generated in 0.0644 seconds