Spelling suggestions: "subject:"peroxisome angiogenesis""
1 |
Characterization of peroxisomes and peroxisome deficient cell lines by super-resolution microscopy and biochemical methodsSoliman, Kareem 26 September 2016 (has links)
No description available.
|
2 |
PEX1 Mutations in Australasian Patients with Disorders of Peroxisome BiogenesisMaxwell, Megan Amanda, n/a January 2004 (has links)
The peroxisome is a subcellular organelle that carries out a diverse range of metabolic functions, including the b-oxidation of very long chain fatty acids, the breakdown of peroxide and the a-oxidation of fatty acids. Disruption of peroxisome metabolic functions leads to severe disease in humans. These diseases can be broadly grouped into two categories: those in which a single enzyme is defective, and those known as the peroxisome biogenesis disorders (PBDs), which result from a generalised failure to import peroxisomal matrix proteins (and consequently result in disruption of multiple metabolic pathways). The PBDs result from mutations in PEX genes, which encode protein products called peroxins, required for the normal biogenesis of the peroxisome. PEX1 encodes an AAA ATPase that is essential for peroxisome biogenesis, and mutations in PEX1 are the most common cause of PBDs worldwide. This study focused on the identification of mutations in PEX1 in an Australasian cohort of PBD patients, and the impact of these mutations on PEX1 function. As a result of the studies presented in this thesis, twelve mutations in PEX1 were identified in the Australasian cohort of patients. The identified mutations can be broadly grouped into three categories: missense mutations, mutations directly introducing a premature termination codon (PTC) and mutations that interrupt the reading frame of PEX1. The missense mutations that were identified were R798G, G843D, I989T and R998Q; all of these mutations affect amino acid residues located in the AAA domains of the PEX1 protein. Two mutations that directly introduce PTCs into the PEX1 transcript (R790X and R998X), and four frameshift mutations (A302fs, I370fs, I700fs and S797fs) were identified. There was also one mutation found in an intronic region (IVS22-19A>G) that is presumed to affect splicing of the PEX1 mRNA. Three of these mutations, G843D, I700fs and G973fs, were found at high frequency in this patient cohort. At the commencement of these studies, it was hypothesised that missense mutations would result in attenuation of PEX1 function, but mutations that introduced PTCs, either directly or indirectly, would have a deleterious effect on PEX1 function. Mutations introducing PTCs are thought to cause mRNA to be degraded by the nonsense-mediated decay of mRNA (NMD) pathway, and thus result in a decrease in PEX1 protein levels. The studies on the cellular impact of the identified PEX1 mutations were consistent with these hypotheses. Missense mutations were found to reduce peroxisomal protein import and PEX1 protein levels, but a residual level of function remained. PTC-generating mutations were found to have a major impact on PEX1 function, with PEX1 mRNA and protein levels being drastically reduced, and peroxisomal protein import capability abolished. Patients with two missense mutations showed the least impact on PEX1 function, patients with two PTC-generating mutations had a severe defect in PEX1 function, and patients carrying a combination of a missense mutation and a PTC-generating mutation showed levels of PEX1 function that were intermediate between these extremes. Thus, a correlation between PEX1 genotype and phenotype was defined for the Australasian cohort of patients investigated in these studies. For a number of patients, mutations in the coding sequence of one PEX1 allele could not be identified. Analysis of the 5' UTR of this gene was therefore pursued for potential novel mutations. The initial analyses demonstrated that the 5' end of PEX1 extended further than previously reported. Two co-segregating polymorphisms were also identified, termed 137 T>C and 53C>G. The -137T>C polymorphism resided in an upstream, in-frame ATG (termed ATG1), and the possibility that the additional sequence represented PEX1 coding sequence was examined. While both ATGs were found to be functional by virtue of in vitro and in vivo expression investigations, Western blot analysis of the PEX1 protein in patient and control cell extracts indicated that physiological translation of PEX1 was from the second ATG only. Using a luciferase reporter approach, the additional sequence was found to exhibit promoter activity. When examined alone the -137T>C polymorphism exerted a detrimental effect on PEX1 promoter activity, reducing activity to half that of wild-type levels, and the -53C>G polymorphism increased PEX1 promoter activity by 25%. When co-expressed (mimicking the physiological condition) these polymorphisms compensated for each other to bring PEX1 promoter activity to near wild-type levels. The PEX1 mutations identified in this study have been utilised by collaborators at the National Referral Laboratory for Lysosomal, Peroxisomal and Related Genetic Disorders (based at the Women's and Children's Hospital, Adelaide), in prenatal diagnosis of the PBDs. In addition, the identification of three common mutations in Australasian PBD patients has led to the implementation of screening for these mutations in newly referred patients, often enabling a precise diagnosis of a PBD to be made. Finally, the strong correlation between genotype and phenotype for the patient cohort investigated as part of these studies has generated a basis for the assessment of newly identified mutations in PEX1.
|
3 |
Analyse des PEX1-Gens bei Patienten mit Zellweger-Syndrom: Identifikation einer neuen Deletion und Untersuchung von Polymorphismen in der 5'-untranslatierten Region / Analysis of the PEX1 gene of patients with Zellweger syndrome: Identification of a novel deletion and characterization of polymorphisms in the 5' untranslated regionRabenau, Jana 19 July 2011 (has links)
No description available.
|
4 |
Characterization of peroxisomal multivesicular body morphology and the role of host-cell and viral components in their biogenesis in plant and yeast cellsGibson, Kimberley 21 December 2009 (has links)
Peroxisome biogenesis is complex, involving a diverse array of intracellular pathways and mechanisms that mediate their biogenesis and cellular functions. Relevant to our understanding of peroxisome biogenesis is the utilization of peroxisomal membranes for viral genome replication as observed in plant cells infected by several members of the Tombusviridae family of positive-strand RNA viruses. Tomato Bushy Stunt Virus (TBSV), for instance, usurps an array of host factors that facilitate the transformation of peroxisomes into peroxisomal multivesicular bodies (pMVB) the sites of viral RNA replication. In this study, pMVB topology and biogenesis was investigated using transmission electron and epifluorescence microscopy of tobacco and wildtype or mutant budding yeast that were transformed with TBSV replicase proteins and a defective interfering viral RNA. Overall, the results suggest that host-virus interactions specifically associated with Endosomal Sorting Complex Required for Transport (ESCRT) and lipid metabolism are involved in TBSV replication and pMVB biogenesis.
|
Page generated in 0.0872 seconds