• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms of the downregulation of prostaglandin E₂-activated protein kinase A after chronic exposure to nerve growth factor or prostaglandin E₂

Malty, Ramy Refaat Habashy 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Chronic inflammatory disorders are characterized by an increase in excitability of small diameter sensory neurons located in dorsal root ganglia (DRGs). This sensitization of neurons is a mechanism for chronic inflammatory pain and available therapies have poor efficacy and severe adverse effects when used chronically. Prostaglandin E₂ (PGE₂) is an inflammatory mediator that plays an important role in sensitization by activating G-protein coupled receptors (GPCRs) known as E-series prostaglandin receptors (EPs) coupled to the protein kinase A (PKA) pathway. EPs are known to downregulate upon prolonged exposure to PGE₂ or in chronic inflammation, however, sensitization persists and the mechanism for this is unknown. I hypothesized that persistence of PGE₂-induced hypersensitivity is associated with a switch in signaling caused by prolonged exposure to PGE₂ or the neurotrophin nerve growth factor (NGF), also a crucial inflammatory mediator. DRG cultures grown in the presence or absence of either PGE₂ or NGF were used to study whether re-exposure to the eicosanoid is able to cause sensitization and activate PKA. When cultures were grown in the presence of NGF, PGE₂-induced sensitization was not attenuated by inhibitors of PKA. Activation of PKA by PGE₂ was similar in DRG cultures grown in the presence or absence of NGF when phosphatase inhibitors were added to the lysis and assay buffers, but significantly less in cultures grown in the presence of NGF when phosphatase inhibitors were not added. In DRG cultures exposed to PGE₂ for 12 hours-5 days, sensitization after re-exposure to PGE₂ is maintained and resistant to PKA inhibition. Prolonged exposure to the eicosanoid caused complete loss of PKA activation after PGE₂ re-exposure. This desensitization was homologous, time dependent, reversible, and insurmountable by a higher concentration of PGE₂. Desensitization was attenuated by reduction of expression of G-protein receptor kinase 2 and was not mediated by PKA or protein kinase C. The presented work provides evidence for persistence of sensitization by PGE₂ as well as switch from the signaling pathway mediating this sensitization after long-term exposure to NFG or PGE₂.

Page generated in 0.1675 seconds