Spelling suggestions: "subject:"perturbation dde règles dde décision"" "subject:"perturbation dde règles dee décision""
1 |
Réduction de dimension en statistique et application en imagerie hyper-spectraleGirard, Robin 26 June 2008 (has links) (PDF)
Cette thèse est consacrée à l'analyse statistique de données en grande dimension. Nous nous intéressons à trois problèmes statistiques motivés par des applications médicales : la classification supervisée de courbes, la segmentation supervisée d'images hyperspectrales et la segmentation non-supervisée d'images hyperspectrales. Les procédures développées reposent pour la plupart sur la théorie des tests d'hypothèses (tests multiples, minimax, robustes et fonctionnels) et la théorie de l'apprentissage statistique. Ces théories sont introduites dans une première partie. Nous nous intéressons, dans la deuxième partie, à la classification supervisée de données gaussiennes en grande dimension. Nous proposons une procédure de classification qui repose sur une méthode de réduction de dimension et justifions cette procédure sur le plan pratique et théorique. Dans la troisième et dernière partie, nous étudions le problème de segmentation d'images hyper-spectrales. D'une part, nous proposons un algorithme de segmentation supervisée reposant à la fois sur une analyse multi-échelle, une estimation par maximum de vraisemblance pénalisée, et une procédure de réduction de dimension. Nous justifions cet algorithme par des résultats théoriques et des applications pratiques. D'autre part, nous proposons un algorithme de segmentation non supervisée impliquant une décomposition en ondelette des spectres observées en chaque pixel, un lissage spatial par croissance adaptative de régions et une extraction des frontières par une méthode de vote majoritaire.
|
Page generated in 0.1554 seconds