Spelling suggestions: "subject:"perturbation adiabatique"" "subject:"perturbation adiabatic""
1 |
Etude de perturbations adiabatiques de l'équation de Schrödinger périodiqueMARX, Magali 06 December 2004 (has links) (PDF)
Ce travail est consacré à l'étude de perturbations adiabatiques de l'équation de Schrödinger périodique en dimension 1. Précisément, on considère l'opérateur $H_(\varphi,\varepsilon)=-\Delta+[V(x)+W(\varepsilon x+\varphi)]$ lorsque $V$ est périodique, $W$ tend vers $0$ à l'infini, $\varepsilon$ et $\varphi$ sont des paramètres réels. On se place dans le cadre de la limite adiabatique où le paramètre $\varepsilon$ est petit. On s'intéresse aux valeurs propres de $H_(\varphi,\varepsilon)$ dans les lacunes de l'opérateur périodique $-\Delta+V$ ; sous des hypothèses adéquates sur $W$, ces valeurs propres sont créées par les extrema de $W$. Lorsque $W$ a un unique extremum, on montre que ces valeurs propres oscillent autour de certaines énergies quantifiées par une condition de type Bohr-Sommerfeld. L'amplitude des oscillations est exponentiellement petite et déterminée par un coefficient tunnel. Lorsque deux extrema sont en jeu, ils créent chacun une suite de valeurs propres ; celles-ci peuvent être résonantes. Dans ce cas, on met en évidence un phénomène d'éclatement ; ce phénomène est l'analogue de celui bien connu de splitting dans le cas du double puits.
|
Page generated in 0.1268 seconds