• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Role Of Pge2 Biosynthesis And Metabolism In Liver Injury And Liver Cancer

January 2015 (has links)
PGE2 plays an important role in liver inflammation and carcinogenesis. Its metabolism is regulated by a cascade of reactions catalyzed by enzymes including COX-1/2, mPGES-1/2, 15-PGDH. Among these regulators, mPGES-1 is a cytokine-inducible enzyme mainly responsible for catalyzing terminal synthesis of PGE2, 15-PGDH catalyzes the oxidation of PGE2 to 15-keto-PGE2. In this context, we exogenously expressed mPGES-1 or 15-PGDH genes in mice hepatocytes to constitute a physiological condition ideal for evaluating PGE2 and its metabolites function in liver pathogenesis. In the first part, we developed transgenic mice with targeted expression of mPGES-1 in the liver and assessed the response of the transgenic mice to Fas-induced hepatocyte apoptosis and acute liver injury. Compared to wild type mice, the mPGES-1 Tg mice showed less liver hemorrhage, lower serum alanine transaminase and aspartate transaminase levels, less hepatic necrosis/apoptosis, and lower levels of caspase activation after intraperitoneal injection of the anti-Fas antibody Jo2. Western blotting analyses revealed increased expression and activation of the serine/threonine kinase Akt and associated anti-apoptotic molecules in the liver tissues of Jo2-treated mPGES-1 Tg mice. Pretreatment with the mPGES-1 inhibitor (MF63) or the Akt inhibitor (Akt inhibitor V) restored the susceptibility of the mPGES-1 Tg mice to Fas-induced liver injury. Our findings provide novel evidence that mPGES-1 prevents Fas-induced liver injury through activation of Akt and related signaling. This finding is consistent with previous reports of the anti-apoptotic and pro-proliferative role of PGE2. Our results suggest that induction of mPGES-1 or treatment with PGE2 may represent a potential therapeutic strategy for the prevention and treatment of Fas-associated liver injuries. In the second part, we generated transgenic mice with targeted expression of 15-PGDH in the liver and the animals were subjected to LPS/GalN-induced acute liver inflammation and injury. Compared to the wild type mice, the 15-PGDH Tg mice showed lower levels of alanine aminotransferase and aspartate aminotransferase, less liver tissue damage, less hepatic apoptosis/necrosis, less macrophage activation, and lower inflammatory cytokine production. In Kupffer cell cultures, treatment with 15-keto-PGE2 or the conditioned medium (CM) from 15-PGDH Tg hepatocyes inhibited LPS-induced cytokine production. Both 15-keto-PGE2 and the CM from15-PGDH Tg hepatocyes also up-regulated the expression of PPAR-γ downstream genes in Kupffer cells. In cultured hepatocytes, 15-keto-PGE2 treatment or 15-PGDH overexpression did not influence TNF-α-induced hepatocyte apoptosis. These findings suggest that 15-PGDH protects against LPS/GalN-induced liver injury and the effect is mediated via 15-keto-PGE2, which activates PPAR-γ in Kupffer cells and thus inhibits their ability to produce inflammatory cytokines. Accordingly, we observed that the PPAR-γ antagonist, GW9662, reversed the effect of 15-keto-PGE2 in Kupffer cell in vitro and restored the susceptibility of 15-PGDH Tg mice to LPS/GalN-induced acute liver injury in vivo. Our findings not only support the pro-inflammatory role of PGE2, but also reveal a novel anti-inflammatory role of 15-keto-PGE2. The data suggest that induction of 15-PGDH expression or utilization of a 15-keto-PGE2 analog may be therapeutic for treatment of endotoxin-associated liver inflammation/injury. Consistent with a pro-carcinogenic role for PGE2, overexpression mPGES-1 enhances growth of either HCC or cholangiocarcinoma cells, while overexpression 15-PGDH inhibits tumor cell growth in vitro. In the third part, we use a pharmacological method to induce 15-PGDH in cholangiocarcinoma tumor cells to inhibit PGE2 production. Our results indicated that treatment of human cholangiocarcinoma cells (CCLP1 and TFK-1) with ω-3 PUFA (DHA) or transfection of these cells with the Fat-1 gene (encoding Caenorhabditis elegans desaturase which converts ω-6 PUFA to ω-3 PUFA) significantly increased 15-PGDH protein level in cholangiocarcinoma cell lines. Human cholangiocarcinoma cells treated with DHA or transfected with a Fat-1 expression vector showed reduction of miRNA26a and miRNA26b (both miRNAs target 15-PGDH mRNA thus inhibiting 15-PGDH translation). Consistent with these findings, we observed that overexpression of miR26a or miR26b decreased 15-PGDH protein, reversed ω-3 PUFA-induced accumulation of 15-PGDH protein, and prevented ω-3 PUFA-induced inhibition of cholangiocarcinoma cell growth. Knockdown of 15-PGDH also attenuated ω-3 PUFA-induced inhibition of tumor cell growth. We observed that ω-3 PUFA suppressed miRNA26a and miRNA26b by inhibiting c-myc, a transcription factor that co-regulates a gene cluster comprised of miR-26a/b and carboxy-terminal domain RNA polymerase II polypeptide A small phosphatases (CTDSPs). Accordingly, overexpression of c-myc enhanced the expression of miRNA26a/b and prevented ω-3 PUFA-induced inhibition of tumor cell growth. Taken together, our results support a pro-tumorigenic role for PGE2, and suggest induction of 15-PGDH as potential way for the prevention and treatment of human cholangiocarcinoma. / 1 / LU YAO
2

15-HYDROXYPROSTAGLANDIN DEHYDROGENASE IS A TGF-beta INDUCED SUPPRESSOR OF HUMAN COLORECTAL CANCER

Yan, Min January 2005 (has links)
No description available.
3

Technology and Commercial Assessment of a Tissue Regenerating Drug in the Regenerative Medicine Market

Webber, Nicholas R. 29 August 2014 (has links)
No description available.
4

The Role of Prostaglandin E2 in causing susceptibility towards Anaphylaxis

Rastogi, Shruti 30 July 2020 (has links)
Die Ausbildung und der Schweregrad einer Anaphylaxie kann durch verschiedene Co-Faktoren beeinflusst werden. Zu diesen zählen die nichtsteroidalen Antiphlogistika (NSAIDs), die ihre Wirkung über die Inhibition der COX entfalten. Wie NSAIDs den Schweregrad der Anaphylaxie beeinflussen, ist bisher nicht genau bekannt. Interessanterweise zeigen Anaphylaxie-Patienten mit einer NSAID-Hypersensibilität niedrige Konzentrationen des regulatorischen Prostaglandins E2 (PGE2). Zudem zeigen ASA-tolerante und –intolerante Asthma-Patienten variable anaphylaktische Sensitivitäten. Anhand der vorliegenden Arbeit sollte untersucht werden, ob sich eine PGE2-Dysregulation auf die Ausbildung und den Schweregrad der Anaphylaxie auswirkt und ob diese durch genetische Prädispositionen gefördert werden kann. Dazu wurden zunächst die PGE2 Konzentration im Serum von ANA-Patienten und gesunden Individuen gemessen. ANA-Patienten zeigten reduzierte PGE2 Level, die invers mit dem Schweregrad der ANA korrelierten. Unterstützend weisen zwei in der Allergieforschung häufig verwendete Mauslinien, Balb/c und C57BL/6, unterschiedliche PGE2 Level auf, die wiederum invers mit dem ANA-Schweregrad korrelierten. Eine Stabilisierung der PGE2 Konzentration mittels eines pharmakologischen Inhibitors der Hydroxyprostaglandin-Dehydrogenase (15-PGDH-I) in vivo führte zu einer Verbesserung des ANA Schweregrades. Um in diesem Zusammenhang den Einfluss von ASA und PGE2 besser zu verstehen, wurde das Model der systemisch passiven ANA im Mausmodel eingesetzt. ASA verschlimmerte den Schweregrad der ANA durch die Inhibition der COX1/2. PGE2 konnte diese Verschlimmerung über die EP Rezeptoren 2, 3 und 4 reduzieren. Um die zugrundeliegenden Mechanismen der Wirkweise von exogenem PGE2 und EP-Agonisten besser zu verstehen, wurden diese Zusammenhänge in murinen und humanen Mastzellen untersucht. PGE2 reduzierte die Schwere der ANA durch Inhibition der Mastzell-Aktivität in diesem System über die Rezeptoren EP2 und EP4. Anhand der vorliegenden Arbeit konnte gezeigt werden, dass bereits homöostatische PGE2 Konzentrationen die Aktivität der Mastzelle verändern und vor einer schweren ANA schützen. Zudem kann der Grad der ANA und der Einfluss des PGE2 auf die Mastzellantwort durch genetische Prädisposition beeinflusst werden. Die pharmakologische Stabilisierung des PGE2 könnte daher eine vielversprechende, therapeutische wie auch vorbeugende Strategie zur Behandlung risikoreicher ANA- Patienten sein. / The clinical outcome of anaphylaxis (ANA) can be affected by several co-factors. Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known co-factors of ANA acting via COX-inhibition. The NSAIDs-mediated mechanisms altering the severity of ANA are not well-defined. It is reported that patients of ASA (NSAID)-hypersensitivity show low levels of the regulatory prostaglandin E2 (PGE2). Moreover, the effectiveness of PGE2 administration in such patients suggests a critical role of PGE2 in ASA hypersensitivity. In addition, patients of ASA-tolerant and ASA-intolerant asthma show variable ANA sensitivities suggesting a role of genetic variation in susceptibility. The aim of this thesis was to study whether and how PGE2 dysregulation predisposes to ANA and whether genetic pre-dispositions affect the PGE2 system and therefore ANA susceptibility. First, sera from ANA patients and healthy individuals were analyzed for PGE2 levels. ANA patients were characterized by reduced PGE2 levels which inversely correlated with the severity of ANA. This disparity was confirmed by differential PGE2 levels between Balb/c and BL/6 strains, two genetic mouse strains frequently employed in allergy research. PGE2 levels in these mice were again inversely related with the severity of ANA. Results were confirmed by in vivo PGE2 stabilization using 15-hydroxyprostaglandin dehydrogenase inhibitor (15-PGDH-I). Pharmacological PGE2 stabilization ameliorated ANA severity in mice. A passive systemic ANA (PSA) model was applied to study the impact of ASA on ANA severity and the role of PGE2 in this context. ASA aggravated ANA by inhibiting COX-1/COX-2, while PGE2 reduced the aggravation through EP receptors 2, 3 and 4. To delineate the underlying mechanisms, murine and human mast cells were used to study the impact of exogenous PGE2 and EP agonists. PGE2 attenuated ANA severity by inhibiting MC activation through EP2 and EP4 receptors and interfering with MC signaling. In summary, this thesis demonstrates that homeostatic levels of PGE2 modulate MC activation and protect against ANA severity. The impact of PGE2 on MC responses and ANA susceptibility is governed by genetic variation. Pharmacological stabilization of PGE2 may prove to be a therapeutic or preventive strategy in the management of high-risk ANA patients.

Page generated in 0.0287 seconds